

Getting Started with Django

Develop simple web applications with the powerful
Django framework

Samuel Dauzon

BIRMINGHAM - MUMBAI

Getting Started with Django

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: June 2014

Production reference: 1130614

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78398-370-4

www.packtpub.com

Cover image by Gagandeep Sharma (er.gagansharma@gmail.com)

Credits

Author
Samuel Dauzon

Reviewers
Jorge Armin Garcia Lopez

Caleb Smith

Deepak Thukral

Commissioning Editor
Julian Ursell

Acquisition Editor
Nikhil Karkal

Content Development Editor
Ruchita Bhansali

Technical Editor
Gaurav Thingalaya

Copy Editors
Dipti Kapadia

Aditya Nair

Project Coordinator
Puja Shukla

Proofreaders
Simran Bhogal

Maria Gould

Paul Hindle

Indexers
Hemangini Bari

Mariammal Chettiyar

Rekha Nair

Priya Subramani

Production Coordinator
Saiprasad Kadam

Cover Work
Saiprasad Kadam

About the Author

Samuel Dauzon is a web developer. After two years of studying networks and
their administration, he decided to head for development. He regularly tries out
the latest development technologies for his customers. He is interested in software
quality and security. He is also interested in web frameworks and has studied
Symfony2 and ExtJS. He works primarily on CodeIgniter2 and Django.

He previously worked for CER FRANCE 49 (an accounting firm) for one year,
where he created some software that was used internally with the WebDev software.
Presently, he works for ILTR, a web development company specializing in ASP,
PHP, and CodeIgniter2. For over two years, he has also worked as a freelance
web developer (in PHP, Django, and so on).

I thank my wife, Noëllie, who has long participated in this book by
translating French to English and for supporting me with her love
during the writing of this book. I thank my parents for their support
and attention. I thank my friends, especially Marion and Dimitri,
who have borne with me while I explained what a web framework
is. I also thank my family and all those who have borne with me
while I explained the book's subject. I also want to thank Nikhil,
Puja (for her precious encouragements), Ruchita, and Gaurav
from Packt Publishing, with whom it's been a pleasure to work.

About the Reviewers

Jorge Armin Garcia Lopez is a very passionate information security consultant
from Mexico with more than six years of experience in computer security, penetration
testing, intrusion detection/prevention, malware analysis, and incident response. He
is the leader of a tiger team at one of the most important security companies in Latin
America and Spain. Also, he is a security researcher at Cipher Storm Ltd. Group and
is the co-founder and CEO of the most important security conference in Mexico called
BugCON. He holds important security industry certifications such as OSCP, GCIA,
and GPEN, and is also a FireEye specialist.

He has also reviewed Penetration Testing with Backbox, Packt Publishing and Penetration
Testing with the Bash shell, Packt Publishing.

Thanks to all my friends for supporting me. Special thanks to my
grandmother, Margarita; my sister, Abril; and to Krangel, Shakeel
Ali, Mada, Hector Garcia Posadas, and Belindo.

Caleb Smith began programming text adventures and RPGs in BASIC in his
youth. More recently, Caleb can be found spending his days writing Python and
JavaScript for web applications at Caktus Consulting Group, LLC. In his spare time,
Caleb enjoys functional programming, ethnic food, C programming, music theory,
and contributing to free and open source software projects. Caleb studied music
education in college and especially enjoys mentoring new programmers.

Deepak Thukral is a polyglot and Django framework contributor. He moved
from India to Europe, where he completed his Master's degree in Computer Science,
and later he was involved in various scientific projects using Python as the primary
programming language. He currently works for various companies, helping them
scale their platforms with Python.

www.PacktPub.com

Support files, eBooks, discount offers and
more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print and bookmark content
•	 On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib
today and view nine entirely free books. Simply use your login credentials for immediate access.

Table of Contents
Preface	 1
Chapter 1: Django's Position on the Web	 7

From Web 1.0 to Web 2.0	 7
Web 1.0	 7
Web 2.0	 8

What is Django?	 9
Django – a web framework	 9

The MVC framework	 9
Why use Django?	 11
Summary	 12

Chapter 2: Creating a Django Project	 13
Installing Python 3	 13

Installing Python 3 for Windows	 14
Installing Python 3 for Linux	 14
Installing Python 3 for Mac OS	 15

Installing setuptools	 15
Installing setuptools for Windows	 15
Installing setuptools for Linux	 15
Installing setuptools for Mac OS	 15

Installing PIP	 16
Installing PIP for Windows	 16
Installing PIP for Linux	 16
Installing PIP for Mac OS	 17

Installing Django	 17
Installing Django for Windows	 17
Installing Django for Linux	 17
Installing Django for Mac OS	 18

Table of Contents

[ii]

Starting your project with Django	 18
Creating an application	 19
Configuring the application	 20
Summary	 21

Chapter 3: Hello World! with Django	 23
Routing in Django	 23
Regular expressions	 25

The uninterpreted characters	 25
The beginning and the end of the line	 25
The any character regular expression	 26
Character classes	 26
Validating the number of characters	 27

Creating our first URL	 28
Creating our first view	 30
Testing our application	 31
Summary	 31

Chapter 4: Working with Templates	 33
Displaying Hello world! in a template	 33
Injecting the data from the view to the template	 35
Creating dynamic templates	 35
Integrating variables in templates	 36

Conditional statements	 36
Looping in a template	 36

Using filters	 37
The upper and lower filters	 37

The lower filter	 37
The upper filter	 37

The capfirst filter	 38
The pluralize filter	 38
The escape and safe to avoid XSS filters	 39
The linebreaks filter	 40
The truncatechars filter	 40

Creating DRY URLs	 40
Extending the templates	 42
Using static files in templates	 43
Summary	 44

Chapter 5: Working with Models	 45
Databases and Django	 46
Migrations with South	 46

Installing South	 47

Table of Contents

[iii]

Using the South extension	 47
Creating simple models	 48

The UserProfile model	 48
The Project model	 50

The relationship between the models	 50
Creating the task model with relationships	 50

Extending models	 51
The admin module	 53

Installing the module	 54
Using the module	 55

Advanced usage of models	 56
Using two relationships for the same model	 56
Defining the str method	 56

Summary	 57
Chapter 6: Getting a Model's Data with Querysets	 59

The persisting model's data on the database	 59
Filling a model and saving it in the database	 60

Getting data from the database	 60
Getting multiple records	 60
Getting only one record	 62
Getting a model instance from the queryset instance	 63

Using the get parameter	 63
Saving the foreign key	 64
Updating records in the database	 65

Updating a model instance	 65
Updating multiple records	 66

Deleting a record	 66
Getting linked records	 67
Advanced usage of the queryset	 68

Using an OR operator in a queryset	 68
Using the lower and greater than lookups	 68
Performing an exclude query 	 69
Making a raw SQL query	 69

Summary	 69
Chapter 7: Working with Django Forms	 71

Adding a developer without using Django forms	 72
Template of an HTML form	 72
The view using the POST data reception	 73

Adding a developer with Django forms	 75
CSRF protection	 75

Table of Contents

[iv]

The view with a Django form	 76
Template of a Django form	 78

The form based on a model	 79
The supervisor creation form	 79

Advanced usage of Django forms	 80
Extending the validation form	 81
Customizing the display of errors	 82
Using widgets	 82
Setting initial data in a form	 84

When instantiating the form	 84
When defining fields	 84

Summary	 84
Chapter 8: Raising Your Productivity with CBV	 85

The CreateView CBV	 86
An example of minimalist usage	 86

Working with ListView	 88
An example of minimalist usage	 88
Extending ListView	 89

The DetailView CBV	 91
An example of minimalist usage	 91
Extending DetailView	 92

The UpdateView CBV	 94
An example of minimalist usage	 94
Extending the UpdateView CBV	 94

The DeleteView CBV	 96
Going further by extending the CBV	 97

Using a custom class CBV update	 97
Summary	 99

Chapter 9: Using Sessions	 101
Creating and getting session variables	 103

An example – showing the last task consulted	 103
About session security	 106
Summary	 107

Chapter 10: The Authentication Module	 109
How to use the authentication module	 109

Configuring the Django application	 110
Editing the UserProfile model	 110

Adding a user	 111
Login and logout pages	 114
Restricting access to the connected members	 117

Table of Contents

[v]

Restricting access to views	 117
Restricting access to URLs	 118

Summary	 118
Chapter 11: Using AJAX with Django	 119

Working with jQuery	 119
jQuery basics	 120

CSS selectors in jQuery	 120
Getting back the HTML content	 120
Setting HTML content in an element	 120
Looping elements	 121
Importing the jQuery library	 121

Working with AJAX in the task manager	 122
Summary	 125

Chapter 12: Production with Django	 127
Completing the development	 127
Selecting the physical server	 128
Selecting the server software	 128
Selecting the server database	 129
Deploying the Django website	 130

Installing PIP and Python 3	 130
Installing PostgreSQL	 130
Installing virtualenv and creating a virtual environment	 131

Installing Django, South, Gunicorn,
and psycopg2	 131

Configuring PostgreSQL	 132
Adaptation of Work_manager to production	 133
Initial South migration	 134
Using Gunicorn	 134
Starting Nginx	 135

Summary	 135
Appendix: Cheatsheet	 137

The field types in models	 137
The numerical field type	 137
The string field type	 138
The temporal field type	 138
Other types of fields	 139
Relationship between models	 139
The model meta attributes	 140
Options common to all fields of models	 140

Table of Contents

[vi]

The form fields	 141
Common options for the form fields	 141
The widget form	 141
Error messages (forms and models)	 142

The template language	 142
Template tags	 142

Loops in dictionaries	 143
Conditional statements	 143

The template filters	 143
The queryset methods	 144

Index	 147

Preface
For some years, web development has evolved through frameworks. Web
development has become more efficient and has improved in quality. Django is a
very sophisticated and popular framework. A framework is a set of tools designed
to facilitate and standardize development. It allows the developer to benefit from
very practical tools to minimize the development time. However, developing with
frameworks requires knowledge about the framework and its proper usage. This
book uses a step-by-step pedagogy to help novice developers learn how to easily
deal with the Django framework. The examples in this book explain the development
of a simple web tool: a text-based task manager.

What this book covers
Chapter 1, Django's Position on the Web, gives a short history of the Web and its
evolution. It explains what a framework and MVC pattern are. It ends with a
presentation of Django.

Chapter 2, Creating a Django Project, deals with the installation of the necessary software
to use Django. At the end of this chapter, you will have a development environment
that is ready to code.

Chapter 3, Hello World! with Django, describes Django routing after a reminder of
regular expressions. It ends with an example of a simple controller that displays
"Hello world!" on the user's browser.

Chapter 4, Working with Templates, explains how Django templates work. It covers the
basics of the template language as well as the best practices for architecture templates
and URL creation.

Preface

[2]

Chapter 5, Working with Models, describes the construction of models in Django. It also
explains how to generate the database and how to maintain it with the South tool.
This chapter also shows you how to set up the administration interface via the
admin module.

Chapter 6, Getting a Model's Data with Querysets, explains how to perform queries on
the database through models. Examples are used to test different types of queries.

Chapter 7, Working with Django Forms, discusses Django forms. It explains how to
create forms with Django and how to treat them.

Chapter 8, Raising Your Productivity with CBV, focuses on a unique aspect of Django:
class-based views. This chapter explains how to create CRUD interfaces in seconds.

Chapter 9, Using Sessions, explains how to use Django sessions. Different practical
examples show the use of session variables and how to get the best out of them.

Chapter 10, The Authentication Module, explains how to use the Django authentication
module. It covers registration, login, and access restriction to some pages.

Chapter 11, Using AJAX with Django, describes the basics of the jQuery library. Then,
it shows a practical example of using AJAX with Django and explains the features
of these pages.

Chapter 12, Production with Django, explains how to deploy a website with the Django
web server such as Nginx and a PostgreSQL web system database.

Appendix, Cheatsheet, is a quick reference to the common methods or attributes useful
to a Django developer.

What you need for this book
The software required for Django development are as follows:

•	 Python 3
•	 PIP 1.5
•	 Django 1.6

Who this book is for
This book is for Python developers who want to learn how to create a website with
a quality framework. The book is also for web developers who use other languages
such as PHP and who wish to improve the quality and maintainability of their
website. The book is for anyone who has Python basics and web basics as well
as who wishes to work on one of the most advanced frameworks today.

Preface

[3]

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. The following are some examples of these styles,
and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"We can include other contexts through the use of the settings.py directive."

A block of code is set as follows:

from django.conf.urls import patterns, include, url
from django.contrib import admin
admin.autodiscover()
urlpatterns = patterns('',
Examples:
url(r'^$', 'Work_msanager.views.home', name='home'),
url(r'^blog/', include('blog.urls')),
url(r'^admin/', include(admin.site.urls)),
)

Any command-line input or output is written as follows:

root@debian: wget https://raw.github.com/pypa/pip/master/contrib

/get-pip.py

root@debian:python3 get-pip.py

New terms and important words are shown in bold. Words that you see on the screen,
in menus or dialog boxes for example, appear in the text like this: "Click on Advanced
System Settings."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[4]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things
to help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to
have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Preface

[5]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we
can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring
you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Django's Position on the Web
Web development has significantly evolved in recent years, particularly with the
apparition of web frameworks. We will learn how to use the Django framework to
create a complete website.

In this chapter, we will discuss the following:

•	 The changes in the Web
•	 A presentation of Django
•	 MVC development pattern

From Web 1.0 to Web 2.0
The Web that you see today has not always been as it appears today. Indeed, many
technologies such as CSS, AJAX, or the new HTML 5 version have improved the Web.

Web 1.0
The Web was born 25 years ago, thanks to growing new technologies. Two of these
have been very decisive:

•	 The HTML language is a display language. It allows you to organize
information with nested tags.

•	 The HTTP protocol is a communication network protocol that allows a client
and a server to communicate. The client is often a browser such as Firefox
or Google Chrome, and the server is very often a web server such as Nginx,
Apache, or Microsoft IIS.

Django's Position on the Web

[8]

In the beginning, developers used the <table> tag to organize various elements of
their page as the menu, header, or content. The images displayed on the web pages
were of low resolutions to avoid the risk of making the page heavy. The only action
that users could perform was to click on the hypertext links to navigate to other pages.

These hypertext links enabled users to navigate from one page to another by sending
only one type of data: the URL of the page. The Uniform Resource Locator (URL)
defines a unique link to get resources such as an HTML page, picture, or PDF file.
No data other than the URL was sent by the user.

Web 2.0
The term Web 2.0 was coined by Dale Dougherty, O'Reilly Media Company, and
was mediated in October 2004 by Tim O'Reilly during the first Web 2.0 conference.

This new Web became interactive and reachable to beginners. It came as a gift to
many technologies, including the following:

•	 The server-side languages such as PHP, Java Server Page (JSP), or ASP.
These languages allow you to communicate with a database to deliver
dynamic content. This also allows users to send data in HTML forms in
order to process data using the web server.

•	 Databases store a lot of information. This information can be used to
authenticate a user or display an item list from older to more recent entries.

•	 Client-side script such as JavaScript enables users to perform simple tasks
without refreshing the page. Asynchronous JavaScript and XML (AJAX)
brings an important feature to the current Web: asynchronous swapping
between the client and the server. Thanks to this, there is no need to refresh
the page in order to enjoy the website.

Today, Web 2.0 is everywhere, and it is a part of our everyday life. Facebook is a
perfect example of a Web 2.0 site, with complete interaction between users and the
storage of massive amounts of information in its database. Web applications have
been popularized as webmails or Google web applications.

It's in this philosophy that Django emerged.

Chapter 1

[9]

What is Django?
Django was born in 2003 in a press agency of Lawrence, Kansas. It is a web framework
that uses Python to create websites. Its goal is to write very fast dynamic websites. In
2005, the agency decided to publish the Django source code in the BSD license. In 2008,
the Django Software Foundation was created to support and advance Django. Version
1.00 of the framework was released a few months later.

Django's slogan
The web framework for perfectionists with deadlines.

Django's slogan is explicit. This framework was created to accelerate the development
phase of a site, but not exclusively. Indeed, this framework uses the MVC pattern,
which enables us to have a coherent architecture, as we will see in the next chapter.

Until 2013, Django was only compatible with Python version 2.x, but Django 1.5
released on February 26, 2013, points towards the beginning of Python 3 compatibility.

Today, big organizations such as the Instagram mobile website, Mozilla.org, and
Openstack.org are using Django.

Django – a web framework
A framework is a set of software that organizes the architecture of an application and
makes a developer's job easier. A framework can be adapted to different uses. It also
gives practical tools to make a programmer's job faster. Thus, some features that are
regularly used on a website can be automated, such as database administration and
user management.

Once a programmer handles a framework, it greatly improves their productivity
and the code quality.

The MVC framework
Before the MVC framework existed, web programming mixed the database access
code and the main code of the page. This returned an HTML page to the user. Even if
we are storing CSS and JavaScript files in external files, server-side language codes are
stored in one file that is shared between at least three languages: Python, SQL,
and HTML.

Django's Position on the Web

[10]

The MVC pattern was created to separate logic from representation and have an
internal architecture that is more tangible and real. The Model-View-Controller
(MVC) represents the three application layers that the paradigm recommends:

•	 Models: These represent data organization in a database. In simple words,
we can say that each model defines a table in the database and the relations
between other models. It's thanks to them that every bit of data is stored in
the database.

•	 Views: These contain all the information that will be sent to the client. They
make views that the final HTML document will generate. We can associate
the HTML code with the views.

•	 Controllers: These contain all the actions performed by the server and are not
visible to the client. The controller checks whether the user is authenticated
or it can generate the HTML code from a template.

The following are the steps that are followed in an application with the MVC pattern:

1.	 The client sends a request to the server asking to display a page.
2.	 The controller uses a database through models. It can create, read, update,

or delete any record or apply any logic to the retrieved data.
3.	 The model sends data from the database; for example, it sends a product list

if we have an online shop.

Chapter 1

[11]

4.	 The controller injects data into a view to generate it.
5.	 The view returns its content depending on the data given by the controller.
6.	 The controller returns the HTML content to the client.

The MVC pattern enables us to get coherence for each project's worker. In a web
agency where there is a web designer and there are developers, the web designer
is the head of the views. Given that views contain only the HTML code, the web
designer will not be disturbed by the developer's code. Developers edit their models
and controllers.

Django, in particular, uses an MVT pattern. In this pattern, views are replaced by
templates and controllers are replaced by views. In the rest of this book, we will be
using MVT patterns. Hence, our HTML code will be templates, and our Python code
will be views and models.

Why use Django?
The following is a nonexhaustive list of the advantages of using Django:

•	 Django is published under the BSD license, which assures that web
applications can be used and modified freely without any problems;
it's also free.

•	 Django is fully customizable. Developers can adapt to it easily by creating
modules or overridden framework methods.

•	 This modularity adds other advantages. There are a lot of Django modules
that you can integrate into Django. You can get some help with other people's
work because you will often find high-quality modules that you might need.

•	 Using Python in this framework allows you to have benefits from all Python
libraries and assures a very good readability.

•	 Django is a framework whose main goal is perfection. It was specifically
made for people who want clear code and a good architecture for their
applications. It totally respects the Don't Repeat Yourself (DRY) philosophy,
which means keeping the code simple without having to copy/paste the
same parts in multiple places.

•	 With regards to quality, Django integrates lots of efficient ways to perform
unit tests.

•	 Django is supported by a good community. This is a very important asset
because it allows you to resolve issues and fix bugs very fast. Thanks to the
community, we can also find code examples that show the best practices.

Django's Position on the Web

[12]

Django has got some disadvantages too. When a developer starts to use a framework,
he /she begins with a learning phase. The duration of this phase depends on the
framework and the developer. The learning phase of Django is relatively short if
the developer knows Python and object-oriented programming.

Also, it can happen that a new version of the framework is published that modifies
some syntax. For example, the syntax of the URLs in the templates was changed
with Version 1.5 of Django. (For more details, visit https://docs.djangoproject.
com/en/1.5/ref/templates/builtins/#url.) Despite this, the documentation
provides details of each Django update.

Summary
In this chapter, we studied the changes that have enabled the Web to evolve into Web
2.0. We also studied the operation of MVC that separates logic from representation.
We finished the chapter with an introduction to the Django framework.

In the next chapter, we will set up our development environment with Python, PIP,
and Django.

Creating a Django Project
At the end of this chapter, you will have all the necessary elements to begin
programming with Django. A website developed with Django is a project that
contains one or more applications. Indeed, when a website becomes more important,
it becomes necessary to logically separate it into several modules. These modules are
then placed in the project that corresponds to the website. In this book, we will not
need to create many applications, but they can be very helpful in some cases. Indeed,
if one day you create an application and you want to use it in another project, you will
need to copy and adapt this application to the new project.

To be able to use Django, you need to install the following software:

•	 Python 3, to enjoy the third version innovations.
•	 setuptools is a module that simplifies the installation of the external

Python module. However, it does not manage to uninstall the module.
•	 PIP extends the possibilities of setuptools by removing packages,

using easier syntax, and providing other benefits.
•	 Django, which that we are going to install thanks to PIP.

These installations will be compatible with Windows, Linux, and Mac OS X.

Installing Python 3
To use all the tools that we have talked about so far, we first need to install
Python 3. The following sections describe how we can install Python on
different operating systems.

Creating a Django Project

[14]

Installing Python 3 for Windows
To download the Python executable, visit http://www.python.org/download/
and download the Python MSI file. Please make sure that you choose the right version
concerning your platform. The Python installation may need an administrator account.

For all the stages of the Python installation, you can leave all the settings at their
default values. If the installation has been done properly, you should see the
following dialog window open:

Installing Python 3 for Linux
To set up Python 3 on Linux, we can use the packet manager APT with the
following command:

root@debian:apt-get install python3

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

We need to confirm the modifications proposed by APT.

Chapter 2

[15]

Installing Python 3 for Mac OS
The latest version of Mac OS already has a version of Python. However, Version 2
of Python is installed, and we would like to install Version 3. To do this, visit
https://www.python.org/download/ and download the right version. Then,
open the file with the extension .dmp. Finally, run the file with the extension .mpkg.
If you get an error such as Python cannot be opened because it is from an
unidentified developer, perform the following steps:

1.	 In Finder, locate the Python install.
2.	 Press the ctrl key and then click on the app's icon.
3.	 Select Open from the shortcut menu.
4.	 Click on Open.

Installing setuptools
PIP is a dependence of setuptools. We need to install setuptools to use PIP.
The following sections describe how we can install setuptools on different
operating systems.

Installing setuptools for Windows
To download the setuptools executable, you have to go to the PyPI website at
https://pypi.python.org/pypi/setuptools. Then, we need to click on
Downloads and select the right version. In this book, we use Version 1.1,
as shown in the following screenshot:

Installing setuptools for Linux
When using APT, we do not need to install setuptools. Indeed, APT will automatically
install it before installing PIP.

Installing setuptools for Mac OS
When we install PIP with the get-pip.py file, setuptools will be directly installed.
Therefore, we do not need to install it for the moment.

Creating a Django Project

[16]

Installing PIP
PIP is very popular among Python users, and using PIP is a Django community best
practice. It handles the package installation, performs updates, and removes all the
Python package extensions. Thanks to this, we can install all the required packages
for Python.

If you have installed Python 3.4 or later, PIP is included with Python.

Installing PIP for Windows
To install PIP, first download it from https://pypi.python.org/pypi/pip/1.5.4.

Then, we need to install PIP from the executable, but don't forget to define the right
Python installation folder, as you can see in the following screenshot:

For the next set of steps, go with the default options and complete the installation.
With PIP, we will be installing all the required Python packages.

Installing PIP for Linux
To install PIP and all the components including setuptools for Linux, you have to use
the get-pip.py file with the following commands:

root@debian: wget https://raw.github.com/pypa/pip/master/contrib
/get-pip.py

root@debian:python3 get-pip.py

Chapter 2

[17]

Installing PIP for Mac OS
To install PIP on Mac OS, we must use the get-pip.py file in the following manner:

curl -O https://raw.github.com/pypa/pip/master/contrib/get-pip.py
sudo python3 get-pip.py

Installing Django
We will then install the framework on which we will be working. The following
sections describe how we can install Django on different operating systems.

Installing Django for Windows
To install Django with PIP, you have to open a command prompt and go to the
Scripts directory that you can find in the Python folder. You can install Django
with the following command:

C:\Python33\Scripts\pip.exe install django=="X.X"

PIP will download and install the Django packages in the site-packages repository
of Python.

Installing Django for Linux
To facilitate the PIP utilization that we have just installed, we have to look for
the version installed on the system and define an alias to refer to the PIP version
installed. Do not forget to execute the following commands as root:

root@debian:compgen -c | grep pip

root@debian:alias pip=pip-3.2

root@debian:pip install django=="1.6"

The first command looks for a usable command containing the word pip. You will
certainly find a line such as pip-3.2. It's on this command that we will define an
alias with the second command.

The third command installs Version 1.6 of Django.

Creating a Django Project

[18]

Installing Django for Mac OS
If you want to use PIP more easily, we can create a symbolic link with the
following commands:

cd /usr/local/bin
ln -s ../../../Library/Frameworks/Python.framework/Version/3.3/bin/pip3
pip

We can then install Django using the following command:

pip install django=="1.6"

Starting your project with Django
Before you start using Django, you need to create an environment for your
applications. We will create a Django project. This project will then contain
our applications.

To create the project of our application, we need to run the following command
using the django-admin.py file (you can find it in the Python33\Scripts folder):

django-admin.py startproject Work_manager

So as to facilitate the use of the Django commands, we can set the environmental
variable of Windows. To do this, you must perform the following steps:

1.	 Right-click on My computer on the desktop.
2.	 Click on Advanced System Settings.
3.	 Next, click on Environmental Variable.
4.	 Add or update the PATH variable:

°° If it does not exist, create the PATH variable and set its value
as C:\Python33/Scripts

°° If it exists, append ;C:\Python33\Scripts to the existing value

5.	 Now, you can use the precedent command without the need to put yourself
in the Python33/Scripts folder.

Chapter 2

[19]

There are different ways to perform the previous command:
•	 The following command will be performed in all cases:

C:\Python33\python.exe C:\Python33\Scripts
\django-admin.py startproject Work_manager

•	 The following command will be performed if we have defined
C:\Python33\Scripts in the PATH variable:
C:\Python33\python.exe django-admin.py startproject
Work_manager

•	 The following command will be performed if we have defined
C:\Python33\Scripts in the PATH variable and the .py
extension file is defined to run with Python:
django-admin.py startproject Work_manager

This command creates a Work_manager folder in the folder from where you run the
command. We will find a folder and a file in that folder:

•	 The manage.py file will be used for actions performed on the project such
as starting the development server or synchronizing the database with
the models.

•	 The Work_manager folder represents an application of our project. By default,
the startproject command creates a new application.

The Work_manager folder contains two very important files:

•	 The settings.py file contains the parameters of our project. This file is
common to all our applications. We use it to define the debug mode, configure
the database, or define Django packages that we will use. The settings.py
file allows us to do more things, but our use will be limited to what has been
previously described.

•	 The urls.py file contains all our URLs. It is with this file that we make the
routing in Django. We will cover this in the next chapter.

Creating an application
We will not program our application in the Work_manager folder because we want
to create our own Task_manager application.

For this, run the following command using the manage.py file created by
the startproject command You must run the following command in the
Work_manager folder which contains manage.py file:

Manage.py startapp TasksManager

Creating a Django Project

[20]

This command creates a TasksManager folder in the folder of our project. This folder
contains five files:

•	 The __ init__.py file defines a package. Python needs it to differentiate
between the standard folders and the packages.

•	 The admin.py file is not useful at this moment. It contains the models that
need to be incorporated in the administration module.

•	 The models.py file contains all the models of our application. We use it a
lot for the development of our application. Models allow us to create our
database and store information. We will discuss this in Chapter 5, Working
with Models.

•	 The tests.py file contains the unit tests of our application.
•	 The views.py file can contain views. This file will contain all the actions

before sending the HTML page to the client.

Now that we know the most important files of Django, we can configure our project.

Configuring the application
To configure our project or our application, we need to edit the settings.py file in
the project folder.

This file contains variables. These variables are the settings that Django reads when
initializing the web app. The following are a few of these variables:

•	 DEBUG: This parameter must be set to True throughout the duration of
development because it is the one that enables the errors to be displayed.
Do not forget to set it to False when putting the project into production,
because an error gives very sensitive information about the site security.

•	 TIME_ZONE: This parameter sets the region referring to which it must
calculate dates and times. The default is UTC.

•	 DEFAULT_CHARSET: This sets the character encoding used. On the
task_manager application, we use UTF-8 encoding to simplify
internationalization. To do this, you must add a line as follows:
DEFAULT_CHARSET = 'utf-8'

•	 LANGUAGE_CODE: This sets the language to be used on the website.
This is the main useful parameter for internationalization.

•	 MIDDLEWARE_CLASSES: This defines the different middleware used.

Chapter 2

[21]

Middleware are classes and methods, including the methods that are performed
during the request process. To simplify the beginning of the development, we will
remove a middleware from that parameter. This requires you to comment out the
line by adding # in front of it:

'django.middleware.csrf.CsrfViewMiddleware',

We'll talk about this middleware in a later chapter to explain its operation
and importance.

Now that we have seen the general settings of Django, we can start developing
our application.

Summary
In this chapter, we have installed all the software needed to use Django. In this chapter,
we learned how to create a Django project and an application. We also learned how to
configure an application.

In the next chapter, we will start the Django development with an example of a web
page containing the text Hello World!.

Hello World! with Django
In this chapter, we will not actually start with the development phase. Instead, we
will study the basics of websites to learn Django, namely, the project and application
creation. In this chapter, we will also:

•	 Learn how to use regular expressions
•	 Create your first URLs
•	 Create your first view
•	 Test your application

At the end of the chapter, we will have created our first web page that will display
Hello World!.

Routing in Django
In the previous chapter, we edited the settings.py file to configure our Django
project. We will edit settings.py again to add a new parameter. The following
line must be present in settings.py:

ROOT_URLCONF = 'Work_manager.urls'

This parameter will define the Python file that will contain all the URLs of our site.
We have already spoken about the previous file as it is in the Work_manager folder.
The syntax that is used to define the ROOT_URLCONF variable means that Django takes
the URLs in the urls.py file contained in the Workmanager package to the root of
the project.

The routing of our application will be based on this file. The routing defines how the
client request will be treated based on the URL sent.

In fact, when the controller receives the client request, it will go in the urls.py file
and check whether the URL is a customer's request and use the corresponding view.

Hello World! with Django

[24]

For example, in the following URL, Django will look for the search string in
urls.py to know what action to take: http://localhost/search.

This is what the urls.py file looks like, as it is created by Django when creating
the project:

from django.conf.urls import patterns, include, url
from django.contrib import admin
admin.autodiscover()
urlpatterns = patterns('',
 # Examples:
 # url(r'^$', 'Work_msanager.views.home', name='home'),
 # url(r'^blog/', include('blog.urls')),
 url(r'^admin/', include(admin.site.urls)),
)

We will detail the components of this file:

•	 The first line imports the functions commonly used in the management
of URLs.

•	 The next two lines are useful to the administration module. We will comment
by adding # at the beginning of the line. These lines will be explained in a
later chapter.

•	 The remaining lines define the URLs in the urlpatterns variable. We will
also review the URL starting with url (r '^ admin.

After having received a request from a web client, the controller goes through the
list of URLs linearly and checks whether the URL is correct with regular expressions.
If it is not in conformity, the controller keeps checking the rest of the list. If it is in
conformity, the controller will call the method of the corresponding view by sending
the parameters in the URL. If you want to write URLs, you must first know the basics
of regular expressions.

Chapter 3

[25]

Regular expressions
Regular expressions are like a small language in itself. Despite their complex and
inaccessible air, they can manipulate the strings with great flexibility. They comprise
a sequence of characters to define a pattern.

We will not explore all the concepts of regular expressions in this book, because it
would require several chapters and divert us from the main goal of this book. Practice
your regular expressions before you write your first URLs; many sites help you train
on regular expressions. Search for Online regex matcher, and you will find pages
to check your regular expressions through JavaScript. You can further explore regular
expressions through the book, Mastering Regular Expressions Python, Packt Publishing,
written by Félix López. There is a practical tool to visualize regular expressions. This
tool is called Regexper and was created by Jeff Avallone. We will use this to represent
regular expressions as a diagram.

The following sections explore the patterns used, functions, and an example to help
you understand regular expressions better.

The uninterpreted characters
Uninterpreted characters, such as letters and digits, in a regular expression mean that
they are present in the string and must be placed in exactly the same order.

For example, the regular expression test01 will validate the test01, dktest01,
and test0145g strings but won't validate test10 or tste01.

The regular expression test-reg will validate a test-regex but not test-aregex
or testregex:

A visual representation of the test01 regular expression

The beginning and the end of the line
To check whether a string must be present at the beginning or the end of the line,
you must use the ^ and $ characters. If ^ is present at the beginning of the string,
the validation will be done at the beginning of the chain. It works in the same way
for $ at the end.

Hello World! with Django

[26]

The following are some examples:

•	 The ^test regular expression will validate test and test01l but not dktest
or ttest01:

•	 The regular expression test$ will validate test and 01test, but not
test01:

•	 The regular expression ^test$ will only validate test:

The any character regular expression
In a regular expression, the dot (.) means "any character". So, when you validate
characters that cannot be inferred, the dot is used. If you try to validate a dot in
your speech, use the escape character, \.

The following are examples:

•	 ^te.t validates test or tept:

•	 ^test\.me$ only validates test.me:

Character classes
To validate the characters, you can use character classes. A character class is enclosed
in square brackets and contains all the allowed characters. To validate all the numbers
and letters in a location, you must use [0123456789a]. For example, ^tes[t0e]$ will
only validate the three chains: test, tes0, and tese.

Chapter 3

[27]

You can also use the following predefined classes:

•	 [0-9] is equivalent to [0123456789]
•	 [a-z] matches all the letters, [abcdefghijklmnopqrstuvwxyz]
•	 [A-Z] matches all uppercase letters
•	 [a-zA-Z] matches all the letters

The following are the shortcuts:

•	 \d is equivalent to [0-9]
•	 \w is equivalent to [a-zA-Z0-9_]
•	 [0-9] is equivalent to [0123456789]

Validating the number of characters
Everything that we have studied until now is the elements that define one and
only one character. To validate a character one or more times, you must use braces
{x, y}, where x defines the minimum number of occurrences and y is the maximum
number of occurrences. If one of them is not specified, you will have an undefined
value. For example, if you forget to include an element in {2,}, it means that the
character must be present at least twice.

The following are some examples:

•	 ^test{2, 3}$ only validates testt and testtt:

•	 ^tests{0,1}$ only validates test and tests

•	 . ^ {1} $ validates all the channels except one: the empty string

The following are the shortcuts:

•	 * is equivalent to {0}
•	 ? is equivalent to {0, 1}
•	 + is equivalent to {1}

Hello World! with Django

[28]

Regular expressions are very powerful and will be very useful even outside of
programming with Django.

Creating our first URL
One of the interesting features of Django is to contain a development server. Indeed,
during the development phase of the site, the developer does not need to set up a
web server. However, when you put the site into production, you will need to install
a real web server because it is not for use in production.

Indeed, the Django server is not secure and can hardly bear a heavy load. This does
not mean that your site will be slow and full of flaws; it just means that you have to
go through a real web server into production.

To use the development server, we need to use the manage.py runserver command
file. We must launch the command prompt and put ourselves in the project root
(use the cd command to browse folders) to execute the command:

manage.py runserver 127.0.0.1:8000

This command starts the Django development server. Let's explain the control step
by step:

•	 The runserver parameter starts the development server.
•	 127.0.0.1 is our internal IP address to the network adapter. This means

that our server will listen and respond only to the computer on which it
is launched. If we were in a local network and wanted to make our website
available on computers other than ours, we would enter our local IP
address instead of 127.0.0.1. The value 127.0.0.1 is the default value
of the parameter.

•	 8000 defines the listening port of the server. This setting is useful to run
multiple web servers on a single computer.

If the command is executed correctly, the window should show us the message, 0
errors found, as shown in the following screenshot:

Chapter 3

[29]

To see the result, we must open our browser and enter the following URL:
http://localhost:8000.

Django confirms that our development environment is functional by displaying the
following message:

This message also means that we have no specified URL. We will add two URLs
to our file:

url (r'^$', 'TasksManager.views.index.page),

url (r'^index$', 'TasksManager.views.index.page')

You should consistently get to know about bugs in Django, especially
on the GitHub page for Django: https://github.com/django.

In the URLs that we enter, we define the first parameter (regular expression) that will
validate the URL. We will discuss the second argument in the following chapter.

Let's go back to our browser and refresh the page with the F5 key. Django will
display a ViewDoesNotExist at / error.

This means that our module does not exist. You must study your errors; in this
example, we had an error. With this error, we will directly fix the part that does
not work.

Another problem that we regularly encounter is the 404 Page not found error.
We can generate it by typing the http://localhost:8000/test404 URL in our
browser. This error means that no URL has been validating the test404 string.

Hello World! with Django

[30]

We must pay attention to errors because seeing and resolving them can save us a lot
of time.

Creating our first view
Now that we have created our URL and interpreted by the routing system,
we must ensure that a view (which is a controller in the MVC pattern) meets
the customer's demand.

This is the function of the second parameter of the URLs present in urls.py.
This parameter will define the method that will play the role of a view. Take,
for example, our first URL:

url (r'^$', 'TasksManager.views.index.page'),

Firstly, as we have seen when studying regular expressions, this URL will be valid
only if we browse the http://localhost:8000 URL. The second parameter in the
URL means that in the index.py file, there is a method called page that will process
the request. The index.py file is located in the views package at the root of the
TasksManager application.

When we want a folder to be recognized as a package by Python, we need to create
a folder that contains the __init__.py file that we can leave blank.

You can choose another structure to store your views. You must choose the structure
that best fits your project. Have a long-term vision of your project in order to define
quality architecture from the first line of code.

In our index.py file, we will create a method called page(). This method will return
an HTML page to the client. The page is being returned by the HTTP protocol, so
we will use the HttpResponse() function and its importation. The argument of
this HttpResponse() function returns the HTML content that we will return to the
browser. To simplify reading this example, we do not use a proper HTML structure,
because we just return Hello world! to the client, as shown in the following code:

- * - Coding: utf -8 - * -
from django.http import HttpResponse
View for index page.
def page (request) :
 return HttpResponse ("Hello world!")

As we can see in the previous example, we added a comment before our page()
method. Comments are very important. They help you understand your code
very quickly.

Chapter 3

[31]

We also set the encoding of the UTF-8 characters. This will improve our application's
compatibility with other languages. We do not necessarily indicate it later in the
book, but it is advisable to use it.

Testing our application
To test our first page, we will have to use the runserver command, which we saw
earlier in this chapter. To do this, you must run the command and refresh your page,
http://localhost:8000, in your browser.

If you see Hello World! appear in your browser without an error, it means that you
have followed the previous steps. If you have forgotten something, do not hesitate to
find your error on the Internet; others have probably been through the same.

However, we must improve our view because at the moment, we do not respect the
MVC model. We will create a template to separate the HTML of Python code and
have more flexibility.

Summary
In this chapter, we studied the basics of regular expressions. It is a powerful tool to
use to manipulate strings. We learned how to manipulate the system routing URL.
We also created our first view that returns a string to the client. In the next chapter,
we will learn how to create maintainable templates with Django.

Working with Templates
As we saw in the first chapter, where we explained the MVC and MVT models,
templates are files that will allow us to generate the HTML code returned to the
client. In our views, the HTML code is not mixed with the Python code.

Django comes with its own template system. However, as Django is modular, it is
possible to use a different template system. This system is composed of a language
that will be used to make our dynamic templates.

In this chapter, we will learn how to do the following:

•	 Send data to a template
•	 Display data in a template
•	 Display object lists in a template
•	 Handle chains with filters in Django
•	 Use URLs effectively
•	 Create base templates in order to extend other templates
•	 Insert static files in our templates

Displaying Hello world! in a template
We will create the first template of our application. To do so, we must first edit
the settings.py file to define the folder that will contain our templates. We will
first define the project folder as PROJECT_ROOT to simplify the migration to another
system:

PROJECT_ROOT = os.path.abspath(os.path.dirname(__file__))
TEMPLATE_DIRS = (
 os.path.join(PROJECT_ROOT, '../TasksManager/templates')
 # Put strings here, like "/home/html/django_templates" or "C:/www/
django/templates".

Working with Templates

[34]

 # Always use forward slashes, even on Windows.
 # Don't forget to use absolute paths, not relative paths.
)

Now that Django knows where to look for the templates, we will create the first
template of the application. To do this, use a file browser and add the index.html
file in the TasksManager/templates/en/public/ folder. We do not need to create
the __init__.py file, because these files do not contain any Python files.

The following is the content of the index.html file:

<html>
 <head>
 <title>
 Hello World Title
 </title>
 </head>
 <body>
 <h1>
 Hello World Django
 </h1>
 <article>
 Hello world !
 </article>
 </body>
</html>

Although the template is correct, we need to change the view to indicate its use. We
will modify the index.py file with the following content:

from django.shortcuts import render
View for index page.
def page(request):
 return render(request, 'en/public/index.html')

If we test this page, we will notice that the template has been taken into account by
the view.

Chapter 4

[35]

Injecting the data from the view to the
template
Before improving our template, we must send variables to the templates. The injection
of the data is based on these variables, as the template will perform certain actions.
Indeed, as we have seen in the explanation of the MVC pattern, the controller must
send variables to the template in order to display them.

There are several functions to send variables to the template. The two main functions
are render() and render_to_response(). The render() function is very similar to
render_to_response (). The main difference is that if we use render, we do not
need to specify context_instance = RequestContext(request) in order to send
the current context. This is the context that will allow us to use the CSRF middleware
later in the book.

We will change our view to inject variables in our template. These variables will be
useful to work with the template language. The following is our modified view:

from django.shortcuts import render
"""
View for index page.
"""

def page(request):
 my_variable = "Hello World !"
 years_old = 15
 array_city_capitale = ["Paris", "London", "Washington"]
 return render(request, 'en/public/index.html', { "my_var":my_
variable, "years":years_old, "array_city":array_city_capitale })

Creating dynamic templates
Django comes with a full-template language. This means that we will use template
tags that will allow us to have more flexibility in our templates and display variables,
perform loops, and set up filters.

The HTML and template languages are mixed in the templates; however, the template
language is very simplistic, and there is a minority when compared to the HTML code.
A web designer will easily modify the template files.

Working with Templates

[36]

Integrating variables in templates
In our controller, we send a variable named my_var. We can display it in a
tag in the following way. Add the following lines in the <article> tag of our
template tag:

 {{my_var}} </ span>

In this way, because our variable contains string = "Hello World!", the HTML
code that will be generated is as follows:

 Hello World!

We will learn how to create conditions for variables or functions in order to filter the
data in the variables in the following examples.

Conditional statements
Language templates also allow conditional structures. Note that for a display
variable, double brackets {{}} are used, but once we have an action to be made
as a condition or loop, we will use {%%}.

Our controller sends a years variable that can define age. An example of a conditional
structure is when you can change the value of the variable in the controller to observe
the changes. Add the following code in our <article> tag:

 {% if years <10 %}
 You are a children
 {% elif years < 18 %}
 You are a teenager
 {% else %}
 You are an adult!
 {% endif %}

In our case, when we send the value 15 to the generated template, the code that is
used is as follows:

 You are a teenager

Looping in a template
Looping allows you to read through the elements of a table or data dictionary. In our
controller, we sent a data table called array_city in which we have the names of
cities. To see all these names of cities in the form of a list, we can write the following
in our template:

Chapter 4

[37]

 {% for city in array_city %}

 {{ city }}

 {% endfor %}

This looping will go through the array_city table, and place each element in the
city variable that we display in the tag. With our sample data, this code will
produce the following HTML code:

 Paris
 London
 Washington

Using filters
Filters are an effective way to modify the data before sending it to the template.
We will look at some examples of filters in the following sections to understand
them better.

The upper and lower filters
The lower filter converts into lowercase letters, and the upper filter converts
into uppercase letters. The example given in the subsequent sections contains
the my_hello variable, which equals Hello World!

The lower filter
The code for the lower filter is as follows:

 {{ my_hello | lower }}

This code generates the following HTML code:

 hello

The upper filter
The code for the upper filter is as follows:

 {{ my_hello | upper }}

Working with Templates

[38]

This code generates the following HTML code:

 HELLO

The capfirst filter
The capfirst filter transforms the first letter to uppercase. The example with the
myvar = "hello" variable is as follows:

{{ my_hello | capfirst }}

This code generates the following HTML code:

 Hello

The pluralize filter
The pluralize filter can easily handle plurals. Often, developers choose a simple
solution for lack of time. The solution is to display channels: You have 2 products
in your cart.

Django simplifies this kind of string. The pluralize filter will add a suffix to the end
of a word if the variable represents a plural value, shown as follows:

You have {{ product }} nb_products {{ nb_products | pluralize }} in
our cart.

This channel will show the following three channels if nb_products is 1 and 2:

You have 1 product in our cart.
You have 2 products in our cart.
I received {{ nb_diaries }} {{ nb_diaries|pluralize : "y , ies "}}.

The previous code will show the following two chains if nb_diaries is 1 and 2:

I received one diary.
I received two diaries.

In the previous example, we used a filter that takes arguments for the first time.
To set parameters to a filter, you must use the following syntax:

{{ variable | filter:"parameters" }}

This filter helps to increase the quality of your site. A website looks much more
professional when it displays correct sentences.

Chapter 4

[39]

The escape and safe to avoid XSS filters
The XSS filter is used to escape HTML characters. This filter helps prevent from XSS
attacks. These attacks are based on injecting client-side scripting by a hacker. The
following is a step-by-step description of an XSS attack:

•	 The attacker finds a form so that the content will be displayed on another
page, for example, a comment field of a commercial site.

•	 The hacker writes JavaScript code to hack using the tag in this form.
Once the form is submitted, the JavaScript code is stored in the database.

•	 The victim views the page comments and JavaScript runs.

The risk is more important than a simple alert() method to display a message. With
this type of vulnerability, the hacker can steal session IDs, redirect the user to a spoofed
site, edit the page, and so on.

More concretely, the filter changes the following characters:

•	 < is converted to <
•	 > is converted to >
•	 ' is converted to '
•	 " is converted to "
•	 & is converted to &

We can automatically escape the contents of a block with the {% autoescape %}
tag, which takes the on or off parameter. By default, autoescape is enabled, but note
that with older versions of Django, autoescape is not enabled.

When autoescape is enabled, if we want to define a variable as a variable of trust,
we can filter it with the safe filter. The following example shows the different
possible scenarios:

<div>
 {% autoescape on %}
 <div>
 <p>{{ variable1 }}</p>
 <p>

 {{ variable2|safe }}

 {% endautoescape %}
 {% autoescape off %}
 </p>
 </div>

Working with Templates

[40]

 {{ variable3 }}
 {{ variable4|escape }}
 {% endautoescape %}
 {{ variable5 }}
</div>

In this example:

•	 variable1 is escaped by autoescape
•	 variable2 is not escaped as it was filtered with safe
•	 variable3 is not escaped because autoescape is defined as off
•	 variable4 is escaped because it has been filtered with the escape filter
•	 variable5 is escaped because autoescape is off

The linebreaks filter
The linebreaks filter allows you to convert line breaks into an HTML tag. A single
new line is transformed into the
 tag. A new line followed by a blank will
become a paragraph break ,</p>:

{{ text|linebreaks }}

The truncatechars filter
The truncatechars filter allows you to truncate a string from a certain length. If this
number is exceeded, the string is truncated and Django adds the string " ...".

The example of the variable that contains "Welcome in Django " is as follows:

{{ text|truncatechars:14 }}

This code outputs the following:

"Welcome in ..."

Creating DRY URLs
Before learning what a DRY link is, we will first remind you of what an HTML link
is. Every day, when we go on the Internet, we change a page or website by clicking
on links. These links are redirected to URLs. The following is an example link to
google.com:

Google link !

Chapter 4

[41]

We will create a second page in our application to create the first valid link. Add the
following line to the urls.py file:

url(r'^connection$', 'TasksManager.views.connection.page'),

Then, create a view corresponding to the preceding URL:

from django.shortcuts import render
View for connection page.
def page(request):
 return render(request, 'en/public/connection.html')

We will create a second template for the new view. Let's duplicate the first template
and call the copy, connection.html, as well as modify Hello world in Connection.
We can note that this template does not respect the DRY philosophy. This is normal;
we will learn how to share code between different templates in the next section.

We will create an HTML link in our first index.html template. This link will direct
the user to our second view. Our <article> tag becomes:

<article>
 Hello world !

 Connection
</article>

Now, let's test our site with the development server, and open our browser to the
URL of our site. By testing the site, we can check whether the link works properly.
This is a good thing, because now you are able to make a static website with Django,
and this framework includes a handy tool to manage URLs.

Django can never write a link in the href property. Indeed, by properly filing our
urls.py file, we can refer to the name of a URL and name address.

To do this, we need to change our urls.py file that contains the following URLs:

url(r'^$', 'TasksManager.views.index.page', name="public_index"),
url(r'^connection/$', 'TasksManager.views.connection.page',
name="public_connection"),

Adding the name property to each of our URLs allows us to use the name of the URL
to create links. Change your index.html template to create a DRY link:

Connection

Working with Templates

[42]

Test the new site again; note that the link still works. But for now, this feature is useless
to us. If Google decides to improve the indexing of the URLs whose addresses end
with the name of the website, you will have to change all the URLs. To do this with
Django, all you will need to do is change the second URL as follows:

url(r'^connection-TasksManager$', 'TasksManager.views.connection.
page', name="public_connection"),

If we test our site again, we can see that the change has been done properly and
that the change in the urls.py file is effective on all the pages of the site. When you
need to use parameterized URLs, you must use the following syntax to integrate the
parameters to the URL:

{% url "url_name" param %}
{% url "url_name" param1, param2 %}

Extending the templates
The legacy of templates allows you to define a super template and a subtemplate that
inherits from the super template. In the super template, it is possible to define blocks
that subtemplates can fill. This method allows us to respect the DRY philosophy by
applying the common code to several templates in a super template. We will use an
example where the index.html template will extend the base.html template.

The following is the base.html template code, which we must create in the
template folder:

<html>
 <head>
 <title>
 % block title_html %}{% endblock %}
 </title>
 </head>
 <body>
 <h1>
 Tasks Manager - {% block h1 %}{% endblock %}
 </h1>
 <article>
 {% block article_content %}{% endblock %}
 </article>
 </body>
</html>

Chapter 4

[43]

In the previous code, we defined three areas that the child templates can override:
title_html, h1, and article_content. The following is the index.html
template code:

{% extends "base.html" %}
{% block title_html %}
 Hello World Title
{% endblock %}
{% block h1 %}
 {{ bloc.super }}Hello World Django
{% endblock %}
{% block article_content %}
 Hello world !

{% endblock %}

In this template, we first use the extends tag, which extends the base.html template.
Then, the block and endblock tags allow us to redefine what is present in the
base.html template. We may change our connection.html template in the
same way so that a change in base.html can be made on both templates.

It is possible to define as many blocks as necessary. We can also create super
templates that extend themselves to create more complex architectures.

Using static files in templates
Static files such as JavaScript files, CSS, or images are essential to obtain an ergonomic
website. These files are often stored in a folder, but they can be useful to modify this
folder under development or in production.

According to the URLs, Django allows us to define a folder containing the static files
and to easily modify its location when required.

To set the path where Django will look for static files, we have to change our
settings.py file by adding or changing the following line:

STATIC_URL = '/static/'
STATICFILES_DIRS = (
 os.path.join(PROJECT_ROOT, '../TasksManager/static/'),
)

Working with Templates

[44]

We will define a proper architecture for our future static files. It is important to choose
an early consistent architecture, as it makes the application support as well as include
another developer easier. Our statics files' architecture is as follows:

static/
 images/
 javascript/
 lib/
 css/
 pdf/

We create a folder for each type of static file and define a lib folder for JavaScript
libraries as jQuery, which we will use later in the book. For example, we change our
base.html file. We will add a CSS file to manage the styles of our pages. To do this,
we must add the following line between </ title> and < / head>:

<link href="{% static "css/style.css" %}" rel="stylesheet" type="text/
css" />

To use the tag in our static template, we must also load the system by putting the
following line before using the static tag:

{% load staticfiles %}

We will create the style.css file in the /static/css folder. This way, the browser
won't generate an error later in the development.

Summary
In this chapter, we learned how to create a template and send data to the templates,
and how to use the conditions, loops, and filters in the templates. We also discussed
how to create DRY URLs for a flexible URL structure, expand the templates to meet
the DRY philosophy, and how to use the static files.

In the next chapter, we will learn how to structure our data to save it in a database.

Working with Models
The website we just created contains only static data; however, what we want to do
is store data so as to automate all the tasks. That's why there are models; they will
put a link between our views and the database.

Django, like many frameworks, proposes database access with an abstraction layer.
This abstraction layer is called object-relational mapping (ORM). This allows you to
use the Python implementation object in order to access the data without worrying
about using a database. With this ORM, we do not need to use the SQL query for
simple and slightly complex actions. This ORM belongs to Django, but there are
others such as SQLAlchemy, which is a quality ORM used especially in the Python
TurboGears framework.

A model is an object that inherits from the Model class. The Model class is a Django
class that is specifically designed for data persistence.

We define fields in models. These properties allow us to organize data within a
model. To make a connection between databases and SQL, we can say that a model is
represented by a table in the database, and a model property is represented by a field
in the table.

In this chapter, we will explain:

•	 How to set up access to the database
•	 How to install South for the database migrations
•	 How to create simple models
•	 How to create a relationship between models
•	 How to extend our models
•	 How to use the administration module

Working with Models

[46]

Databases and Django
Django can interface with many databases. However, during the development of our
application, we use SQLite libraries that are included in Django.

We will modify settings.py to set our connection to the database:

DATABASES = {
 'default': {
 'ENGINE': 'django.db.backends.sqlite3',
 'NAME': os.path.join(PROJECT_ROOT, 'database.db'),
 'USER': '',
 'PASSWORD': '',
 'HOST': '',
 'PORT': '',
 }
}

The following is the description of the properties mentioned in the preceding code:

•	 The ENGINE property specifies the type of database to be used.
•	 The NAME property defines the path and final name of the SQLite database. We

use a syntax using os.path.join to our code, and it is compatible with all
operating systems. The file's database will be contained in the project directory.

•	 The other properties are useful when we use a database server, but as we will
use SQLite, we do not need to define them.

Migrations with South
South is a very useful extension of Django. It facilitates the migration of the database
when changing fields. It also keeps a history of the changes in the structure of
the database.

We talk about it now because it must be installed before the creation of the database
to work correctly.

Django 1.7 incorporates a migration system. You will not need to use South anymore
to make the migration of a Django application. You can find more information about
the migration systems integrated into Django 1.7 at https://docs.djangoproject.
com/en/dev/topics/migrations/.

Chapter 5

[47]

Installing South
To install South, we use the pip command. We have already used it to install Django.
To do this, run the following command:

pip install South

Before actually using South, we must change the settings.py file for South to be
well integrated in Django. To do this, you must go to INSTALLED_APPS and add the
following lines (depending on the version, it is possible that the installation of South
added the line):

'south',
'TasksManager',

Using the South extension
Before we make our first migrations and generate our database, we also have to
create the schema migration. To do this, we must run the following command:

manage.py schemamigration TasksManager --initial

Then, we must perform an initial migration:

manage.py syncdb --migrate

Django asks us to first create an account. This account will be a superuser. Remember
the login and password that you enter; you will need this information later.

South is now fully operational. Each time we need to modify the models, we will
make a migration. However, for the migration to be made correctly, you must keep
the following things in mind:

•	 Never perform the Django syncdb command. After running syncdb
--migrate for the first time, never run it again. Use migrate afterwards.

•	 Always put a default value in the new fields; otherwise, we will be asked to
assign a value.

•	 Each time we finish editing our models, we must execute the following two
commands in the correct order:

manage.py schemamigration TasksManager –auto
manage.py migrate TasksManager

Working with Models

[48]

Creating simple models
To create models, we must have already studied the application in depth. Models are
the basis of any application because they will store all the data. Therefore, we must
prepare them carefully.

Concerning our Tasksmanager application, we need a user who saves tasks
performed on a project. We'll create two models: User_django and Project.

We need to store our models in the models.py file. We will edit the models.py file in
the TasksManager folder. We do not need to modify the configuration file, because
when you need the model, we will have to import it.

The file already exists and has a line. The following line allows you to import the
base model of Django:

from django.db import models

The UserProfile model
To create the UserProfile model, we ask ourselves the question, "what data about the
user do we need to keep?". We will need the following data:

•	 The user's real name
•	 A nickname that will identify each user
•	 A password that will be useful for user authentication
•	 Phone number
•	 Date of birth (this is not essential, but we must study the dates!)
•	 The date and time of the last connection
•	 E-mail address
•	 Age (in years)
•	 The creation date of the user account
•	 A specialization, if it is supervisor
•	 The type of user
•	 A supervisor, if you are a developer

The model that is needed is as follows:

class UserProfile(models.Model):
 name = models.CharField(max_length=50, verbose_name="Name")
 login = models.CharField(max_length=25, verbose_name="Login")

Chapter 5

[49]

 password = models.CharField(max_length=100, verbose_name="Password")
 phone = models.CharField(max_length=20, verbose_name="Phone number"
, null=True, default=None, blank=True)
 born_date = models.DateField(verbose_name="Born date" , null=True,
default=None, blank=True)
 last_connection = models.DateTimeField(verbose_name="Date of last
connection" , null=True, default=None, blank=True)
 email = models.EmailField(verbose_name="Email")
 years_seniority = models.IntegerField(verbose_name="Seniority",
default=0)
 date_created = models.DateField(verbose_name="Date of Birthday",
auto_now_add=True)

We have not defined the specialization, type of user, and supervisor, because these
points will be seen in the next part.

In the preceding code, we can see that Django_user inherits from the Model class.
This Model class has all the methods that we will need to manipulate the models. We
can also override these methods to customize the use of models.

Within this class, we added our fields by adding an attribute in which we specified
the values. For example, the first name field is a character string type with a
maximum length of 50 characters. The verbose_name property will be the label that
defines our field in forms. The following is a list of the commonly used field types:

•	 CharField: This is a character string with a limited number of characters
•	 TextField: This is a character string with unlimited characters
•	 IntegerField: This is an integer field
•	 DateField: This is a date field
•	 DateTimeField: This field consists of the date as well as the time in hours,

minutes, and seconds
•	 DecimalField: This is a decimal number that can be defined precisely

Django automatically saves an id field in auto increment. Therefore,
we do not need to define a primary key.

Working with Models

[50]

The Project model
To save our projects, we will need the following data:

•	 Title
•	 Description
•	 Client name

These factors allow us to define the following model:

class Project(models.Model):
 title = models.CharField(max_length=50, verbose_name="Title")
 description = models.CharField(max_length=1000, verbose_
name="Description")
 client_name = models.CharField(max_length=1000, verbose_name="Client
name")

To comply with good practices, we would not have had to define a text field for the
customer, but define a relationship to a client table. To simplify our first model, we
define a text field for the client name.

The relationship between the models
Relationships are elements that join our models. For example, in the case of this
application, a task is linked to a project. Indeed, the developer performs a task for
a particular project unless it is a more general task, but it's out of the scope of our
project. We define the one-to-many type of relationship in order to denote that a task
always concerns a single project but a project can be connected to many tasks.

There are two other kinds of relationships:

•	 The one-to-one relationship sets apart a model in two parts. The resulting
database will create two tables linked by a relationship. We will see an
example in the chapter on the authentication module.

•	 The many-to-many relationship defines relationships with any model that
can be connected to several other models of the same type. For example, an
author can publish several books and a book may have several authors.

Creating the task model with relationships
For the task model, we need the following elements:

•	 A way to define the task in a few words

Chapter 5

[51]

•	 A description for more details about the task
•	 A past life
•	 Its importance
•	 The project to which it is attached
•	 The developer who has created it

This allows us to write the following model:

class Task(models.Model):
 title = models.CharField(max_length=50, verbose_name="Title")
 description = models.CharField(max_length=1000, verbose_
name="Description")
 time_elapsed = models.IntegerField(verbose_name="Elapsed time" ,
null=True, default=None, blank=True)
 importance = models.IntegerField(verbose_name="Importance")
 project = models.ForeignKey(Project, verbose_name="Project" ,
null=True, default=None, blank=True)
 app_user = models.ForeignKey(UserProfile, verbose_name="User")

In this model, we have defined two foreign key field types: project and app_user.
In the database, these fields contain the login details of the record to which they are
attached in the other table.

The project field that defines the relationship with the Project model has two
additional attributes:

•	 Null: This decides whether the element can be defined as null. The fact
that this attribute is in the project field means that a task is not necessarily
related to a project.

•	 Default: This sets the default value that the field will have. That is, if we do
not specify the value of the project before saving the model, the task will not
be connected to a domain.

Extending models
The inheritance model allows the use of common fields for two different models. For
example, in our App_user model, we cannot determine whether a random recording
will be a developer or supervisor.

Working with Models

[52]

One solution would be to create two different models, but we would have to
duplicate all the common fields such as name, username, and password, as follows:

class Supervisor(models.Model):
 # Duplicated common fields
 specialisation = models.CharField(max_length=50, verbose_
name="Specialisation")

class Developer(models.Model):
 # Duplicated common fields
 supervisor = models.ForeignKey(Supervisor, verbose_
name="Supervisor")

It would be a shame to duplicate the code, but it is the principle that Django and
DRY have to follow. That is why there is an inheritance model.

Indeed, the legacy model is used to define a master model (or supermodel), which
contains the common fields to several models. Children models automatically inherit
the fields of the supermodel.

Nothing is more explicit than an example; we will modify our classes, Developer
and Supervisor, to make them inherit App_user:

class Supervisor(UserProfile):
 specialisation = models.CharField(max_length=50, verbose_
name="Specialisation")

class Developer(UserProfile):
 supervisor = models.ForeignKey(Supervisor, verbose_
name="Supervisor")

The result of the legacy database allows us to create three tables:

•	 A table for the App_user model that contains the fields for the properties of
the model

•	 A table for the Supervisor model, with a text field for specialization and a
field that has a foreign key relationship with the App_user table

•	 A Developer table with two fields: a field in liaison with the Supervisor
table and a field that links to the App_user table

Now that we have separated our two types of users, we will modify the relationship
with App_user because only the developer will record his or her tasks. In the Tasks
model, we have the following line:

app_user = models.ForeignKey(App_user, verbose_name="User")

Chapter 5

[53]

This code is transformed as follows:

developer = models.ForeignKey(Developer, verbose_name="User")

For the generation of the database order to work, we must put models in the correct
order. Indeed, if we define a relationship with a model that is not yet defined, Python
will raise an exception. For the moment, the models will need to be defined in the
order described. Later, we shall see how to work around this limitation.

In the next chapter, we will perform queries on the model. This requires the database
to be synchronized with the models. We must first migrate South before starting the
next chapter.

To perform the migration, we must use the commands we've seen at the beginning
of the chapter. To simplify the migration, we can also create a batch file in the Python
folder, where we will put the following lines:

manage.py schemamigration TasksManager --auto

manage.py migrate

pause

The following is a bash script you can create in the Work_manager folder that can
perform the same thing on Debian Linux:

#!/bin/bash

manage.py runserver 127.0.0.1:8000

This way, when you migrate South, it will execute this file. The pause command
allows you to look at the results or errors displayed without closing the window.

The admin module
The administration module is very convenient and is included by default with Django.
It is a module that will maintain the content of the database without difficulty. This is
not a database manager because it cannot maintain the structure of the database.

One question that you may ask is, "what does it have other than a management tool
database?". The answer is that the administration module is fully integrated with
Django and uses these models.

Working with Models

[54]

The following are its advantages:

•	 It manages the relationships between models. This means that if we want to
save a new developer, the module will propose a list of all the supervisors.
In this way, it will not create a non-existent relationship.

•	 It manages Django permissions. You can set permissions for users according
to models and CRUD operations.

•	 It is quickly established.

Being based on Django models and not on the database, this module allows the user
to edit the recorded data.

Installing the module
To implement the administration module, edit the settings.py file. In the
INSTALLED_APPS setting, you need to add or uncomment the following line:

'django.contrib.admin'

You also have to edit the urls.py file by adding or uncommenting the following
lines:

from django.contrib import admin
admin.autodiscover()
url (r'^admin', include(admin.site.urls)),

The line that imports the administration module has to be at the beginning of the file
with other imports. The line that runs the autodiscover() method must be found
after the imports and before the urlpatterns definition. Finally, the last line is a
URL that should be in urlpatterns.

We also have to create an admin.py file in the TasksManager folder in which we will
define the styles we want to integrate into the management module:

from django.contrib import admin
from TasksManager.models import UserProfile, Project, Task ,
Supervisor , Developer
admin.site.register(UserProfile)
admin.site.register(Project)
admin.site.register(Task)
admin.site.register(Supervisor)
admin.site.register(Developer)

Now that we have configured the administration module, we can easily manage
our data.

Chapter 5

[55]

Using the module
To use the administration module, we must connect to the URL that we have just
defined: http://localhost:8000/admin/.

We must connect with the logins defined when creating the database:

1.	 Once we are connected, the model list appears.
2.	 If we click on the Supervisor model link, we arrive at a page where we can

add a supervisor by using the button at the top-right corner of the window:

3.	 By clicking on this button, we load a page consisting of a form. This form
automatically provides practical tools to manage dates and times:

Let's add a new supervisor and then add a developer. When you want to choose the
supervisor, you can see the one we have just created in a combobox. The green cross
on the right-hand side allows you to quickly create a supervisor.

In the following chapter, we will define the str method for our models. This will
improve the display lists of objects in this management module.

Working with Models

[56]

Advanced usage of models
We studied the basics of the models that allow us to create simple applications.
Sometimes, it is necessary to define more complex structures.

Using two relationships for the same model
Sometimes, it is useful to store two foreign keys (or more) in a single model. For
example, if we want two developers to work in parallel on the same task, we must
use the related_name property in our models. For example, our Task model
contains two relationships with the following lines:

developer1 = models.ForeignKey (Developer , verbose_name = "User" ,
related_name = "dev1")
developer2 = models.ForeignKey (Developer , verbose_name = "User" ,
related_name = "dev2")

Further in this book, we will not use these two relationships. To effectively follow
this book, we must return to our previously defined Task model.

Here, we define two developers on the same task. Best practices advise us
to create a many-to-many relationship in the Task model. The thorough
argument allows you to specify an intermediate table to store additional
data. This is an optional step. An example of this type of relationship is as
follows:

#Relationship to add to the Task model
developers = models.ManyToManyField(Developer ,
through="DeveloperWorkTask")
class DeveloperWorkTask(models.Model):
 developer = models.ForeignKey(Developer)
 task = models.ForeignKey(Task)
 time_elapsed_dev = models.IntegerField(verbose_
name="Time elapsed", null=True, default=None,
blank=True)

Defining the str method
As already mentioned in the section on the use of the admin module, the __str__()
method will allow a better view of our models. This method will set the string that
will be used to display our model instance. When Django was not compatible with
Python 3, this method was replaced by the __unicode__() method.

Chapter 5

[57]

For example, when we added a developer, the drop-down list that defines a
supervisor showed us the "Supervisor object" lines. It would be more helpful to
display the name of the supervisor. In order to do this, change our App_user class
and add the str() method:

class UserProfile (models.Model) :
Fields...
def __str__ (self):
 return self.name

This method will return the name of the supervisor for the display and allows you to
manage the administration easily:

Summary
In this chapter, we learned migration with South. We also learned how to create
simple models and relationships between the models. Furthermore, we learned
how to install and use the admin module. In the next chapter, we will learn how
to manipulate our data. We will learn how to use four main operations on the data:
adding, reading (and research), modification, and deletion.

Getting a Model's Data
with Querysets

Querysets are used for data retrieval rather than for constructing SQL queries
directly. They are part of the ORM used by Django. An ORM is used to link the view
and controller by a layer of abstraction. In this way, the developer uses object model
types without the need to write a SQL query. We will use querysets to retrieve the
data we have stored in the database through models. These four operations are often
summarized by CRUD (Create, Read, Update, and Delete).

The discussed examples in this chapter are intended to show you how the querysets
work. The next chapter will show you how to use forms, and thus, how to save data
sent from a client in the models.

By the end of this chapter, we will know how to:

•	 Save data in the database
•	 Retrieve data from the database
•	 Update data from the database

The persisting model's data on the
database
Data storage is simple with Django. We just need to fill the data in the models,
and use methods to store them in a database. Django handles all the SQL queries;
the developer does not need to write any.

Getting a Model’s Data with Querysets

[60]

Filling a model and saving it in the database
Before you can save data from a model instance to the database, we need to define
all the values of the model's required fields. We can show the examples in our
view index.

The following example shows how to save a model:

from TasksManager.models import Project # line 1
from django.shortcuts import render
def page(request):
 new_project = Project(title="Tasks Manager with Django",
description="Django project to getting start with Django easily.",
client_name="Me") # line 2
 new_project.save() # line 3
 return render(request, 'en/public/index.html', {'action':'Save datas
of model'})

We will explain the new lines of our view:

•	 We import our models.py file; it's the model that we will use in the view
•	 We then create an instance of our Project model and fill it with data
•	 Finally, we execute the save() method that saves the present data in

the instance

We will test this code by starting the development server (or runserver) and
then go to our URL. In the render() method, the value that we defined in the
action variable is displayed. To check if the query is executed, we can use the
administration module. There is also the software for managing databases.

We need to add more records by changing the values randomly in line 2. To find
out how to do this, we'll need to read this chapter.

Getting data from the database
Before using Django to retrieve data from a database, we were using SQL queries
to retrieve an object containing the result. With Django, there are two ways to
retrieve records from the database depending on whether we want to get back
one or several records.

Getting multiple records
To retrieve records from a model, we must first import the model into the view as we
have done before to save the data in a model.

Chapter 6

[61]

We can retrieve and display all the records in the Project model as follows:

from TasksManager.models import Project
from django.shortcuts import render
def page(request):
 all_projects = Project.objects.all()
 return render(request, 'en/public/index.html', {'action': "Display
all project", 'all_projects': all_projects})

The code template that displays the projects becomes:

{% extends "base.html" %}
{% block title_html %}
 Projects list
{% endblock %}
{% block h1 %}
 Projects list
{% endblock %}
{% block article_content %}
 <h3>{{ action }}</h3>
 {% if all_projects|length > 0 %}
 <table>
 <thead>
 <tr>
 <td>ID</td>
 <td>Title</td>
 </tr>
 </thead>
 <tbody>
 {% for project in all_projects %}
 <tr>
 <td>{{ project.id }}</td>
 <td>{{ project.title }}</td>
 </tr>
 {% endfor %}
 </tbody>
 </table>
 {% else %}
 No project.
 {% endif %}
{% endblock %}

The all() method can be linked to a SQL SELECT * FROM query. Now, we will use
the filter() method to filter our results and make the equivalent of a SELECT *
FROM Project WHERE field = value query.

Getting a Model’s Data with Querysets

[62]

The following is the code to filter model records:

from TasksManager.models import Project
from django.shortcuts import render
def page(request):
 action='Display project with client name = "Me"'
 projects_to_me = Project.objects.filter(client_name="Me")
 return render(request, 'en/public/index.html', locals())

We used a new syntax to send the variables to the template. The locals() function
sends all the local variables to the template, which simplifies the render line.

Best practices recommend that you pass the variables one by one
and only send the necessary variables.

Each argument from the filter() method defines a filter for the query. Indeed, if
we wanted to make two filters, we would have written the following line of code:

projects_to_me = Project.objects.filter(client_name="Me",
title="Project test")

This line is equivalent to the following:

projects_to_me = Project.objects.filter(client_name="Me")
projects_to_me = projects_to_me.filter(title="Project test")

The first line can be broken into two, because the querysets are chainable. Chainable
methods are methods that return a queryset such that other queryset methods can
be used.

The response obtained with the all() and filter() methods is of the queryset
type. A queryset is a collection of model instances that can be iterated over.

Getting only one record
The methods that we will see in this chapter return objects of the Model type, which
will be used to record relationships or to modify the instance of the model recovered.

To retrieve a single record with a queryset, we should use the get() method as in
the following line:

first_project = Project.objects.get(id="1")

The get() method when used as the filter() method accepts filter arguments.
However, you should be careful with setting the filters that retrieve a single record.

Chapter 6

[63]

If the argument to get() is client_name = "Me", it would generate an error if we
had more than two records corresponding to client_name.

Getting a model instance from the queryset
instance
We said that only the get() method makes it possible to retrieve an instance of a
model. This is true, but sometimes it can be useful to retrieve an instance of a model
from a queryset.

For example, if we want to get the first record of the customer Me, we will write:

queryset_project = Project.objects.filter(client_name="Me").order_
by("id")
This line returns a queryset in which there are as many elements as
there are projects for the Me customer

first_item_queryset = queryset_project[:1]
This line sends us only the first element of this queryset, but this
element is not an instance of a model

project = first_item_queryset.get()
This line retrieves the instance of the model that corresponds to
the first element of queryset

These methods are chainable, so we can write the following line instead of the
previous three lines:

project = Project.objects.filter(client_name="Me").order_by("id")[:1].
get()

Using the get parameter
Now that we have learned how to retrieve a record and we know how to use a URL,
we will create a page that will allow us to display the record of a project. To do this,
we will see a new URL syntax:

url(r'^project-detail-(?P<pk>\d+)$', 'TasksManager.views.project_
detail.page', name="project_detail"),

This URL contains a new string, (?P<pk>\d+). It allows the URL with a decimal
parameter to be valid because it ends with \d. The + character at the end means that
the parameter is not optional. The <pk> string means that the parameter's name is pk.

Getting a Model’s Data with Querysets

[64]

The system routing Django will directly send this parameter to our view. To use
it, simply add it to the parameters of our page() function. Our view changes to
the following:

from TasksManager.models import Project
from django.shortcuts import render
def page(request, pk):
 project = Project.objects.get(id=pk)
 return render(request, 'en/public/project_detail.html', {'project' :
project})

We will then create our en/public/project_detail.html template extended from
base.html with the following code in the article_content block:

<h3>{{ project.title }}</h3>
<h4>Client : {{ project.client_name }}</h4>
<p>
 {{ project.description }}
</p>

We have just written our first URL containing a parameter. We will use this later,
especially in the chapter about the class-based views.

Saving the foreign key
We have already recorded data from a model, but so far, we have never recorded it
in the relationship database. The following is an example of recording a relationship
that we will explain later in the chapter:

from TasksManager.models import Project, Task, Supervisor, Developer
from django.shortcuts import render
from django.utils import timezone
def page(request):
 # Saving a new supervisor
 new_supervisor = Supervisor(name="Guido van Rossum", login="python",
password="password", last_connection=timezone.now(), email="python@
python.com", specialisation="Python") # line 1
 new_supervisor.save()
 # Saving a new developer
 new_developer = Developer(name="Me", login="me", password="pass",
last_connection=timezone.now(), email="me@python.com", supervisor=new_
supervisor)
 new_developer.save()
 # Saving a new task
 project_to_link = Project.objects.get(id = 1) # line 2

Chapter 6

[65]

 new_task = Task(title="Adding relation", description="Example
of adding relation and save it", time_elapsed=2, importance=0,
project=project_to_link, developer=new_developer) # line 3
 new_task.save()
 return render(request, 'en/public/index.html', {'action' : 'Save
relationship'})

In this example, we have loaded four models. These four models are used to create
our first task. Indeed, a spot is related to a project and developer. A developer is
attached to a supervisor.

Following this architecture, we must first create a supervisor to add a developer.
The following list explains this:

•	 We create a new supervisor. Note that the extending model requires no
additional step for recording. In the Supervisor model, we define the
fields of the App_user model without any difficulties. Here, we use
timezone to record the current day's date.

•	 We look for the first recorded project. The result of this line will record
a legacy of the Model class instance in the project_to_link variable.
Only the get() method gives the instance of a model. Therefore, we
must not use the filter() method.

•	 We create a new task, and attribute the project created in the beginning of
the code and the developer that we just recorded.

This example is very comprehensive, and it combines many elements that we
have studied from the beginning. We must understand it in order to continue
programming in Django.

Updating records in the database
There are two mechanisms to update data in Django. Indeed, there is a mechanism
to update one record and another mechanism to update multiple records.

Updating a model instance
Updating the existing data is very simple. We have already seen what it takes to be
able to do so. The following is an example where it modifies the first task:

from TasksManager.models import Project, Task
from django.shortcuts import render
def page(request):
 new_project = Project(title = "Other project", description="Try to
update models.", client_name="People")

Getting a Model’s Data with Querysets

[66]

 new_project.save()
 task = Task.objects.get(id = 1)
 task.description = "New description"
 task.project = new_project
 task.save()
 return render(request, 'en/public/index.html', {'action' : 'Update
model'})

In this example, we created a new project and saved it. We searched our task for id
= 1. We changed the description and project to the task it is attached to. Finally, we
saved this task.

Updating multiple records
To edit multiple records in one shot, you must use the update() method with a
queryset object type. For example, our People customer is bought by a company
named Nobody, so we need to change all the projects where the client_name
property is equal to People:

from TasksManager.models import Project
from django.shortcuts import render
def page(request):
 task = Project.objects.filter(client_name = "people").update(client_
name="Nobody")
 return render(request, 'en/public/index.html', {'action' : 'Update
for many model'})

The update() method of a queryset can change all the records related to this
queryset. This method cannot be used on an instance of a model.

Deleting a record
To delete a record in the database, we must use the delete() method. Removing
items is easier than changing items, because the method is the same for a queryset
as for the instances of models. An example of this is as follows:

from TasksManager.models import Task
from django.shortcuts import render
def page(request):
 one_task = Task.objects.get(id = 1)
 one_task.delete() # line 1
 all_tasks = Task.objects.all()
 all_tasks.delete() # line 2
 return render(request, 'en/public/index.html', {'action' : 'Delete
tasks'})

Chapter 6

[67]

In this example, line 1 removes the stain with id = 1. Then, line 2 removes all
the present tasks in the database.

Be careful because even if we use a web framework, we keep hold of the data. No
confirmation will be required in this example, and no backup has been made. By
default, the rule for model deletion with ForeignKey is the CASCADE value. This rule
means that if we remove a template instance, the records with a foreign key to this
model will also be deleted.

Getting linked records
We now know how to create, read, update, and delete the present records in the
database, but we haven't recovered the related objects. In our TasksManager
application, it would be interesting to retrieve all the tasks in a project. For example,
as we have just deleted all the present tasks in the database, we need to create others.
We especially have to create tasks in the project database for the rest of this chapter.

With Python and its comprehensive implementation of the object-oriented model,
accessing the related models is intuitive. For example, we will retrieve all the project
tasks when login = 1:

from TasksManager.models import Task, Project
from django.shortcuts import render
def page(request):
 project = Project.objects.get(id = 1)
 tasks = Task.objects.filter(project = project)
 return render(request, 'en/public/index.html', {'action' : 'Tasks
for project', 'tasks':tasks})

We will now look for the project task when id = 1:

from TasksManager.models import Task, Project
from django.shortcuts import render
def page(request):
 task = Task.objects.get(id = 1)
 project = task.project
 return render(request, 'en/public/index.html', {'action' : 'Project
for task', 'project':project})

We will now use the relationship to access the project task.

Getting a Model’s Data with Querysets

[68]

Advanced usage of the queryset
We studied the basics of querysets that allow you to interact with the data. In specific
cases, it is necessary to perform more complex actions on the data.

Using an OR operator in a queryset
In queryset filters, we use a comma to separate filters. This point implicitly means a
logical operator AND. When applying an OR operator, we are forced to use the Q object.

This Q object allows you to set complex queries on models. For example, to select the
projects of the customers Me and Nobody, we must add the following lines in our view:

from TasksManager.models import Task, Project
from django.shortcuts import render
from django.db.models import Q
def page(request):
 projects_list = Project.objects.filter(Q(client_name="Me") |
Q(client_name="Nobody"))
 return render(request, 'en/public/index.html', {'action' : 'Project
with OR operator', 'projects_list':projects_list})

Using the lower and greater than lookups
With the Django queryset, we cannot use the < and > operators to check whether a
parameter is greater than or less than another.

You must use the following field lookups:

•	 __gte: This is equivalent to SQL's greater than or equal to operator, >=
•	 __gt: This is equivalent to SQL's greater than operator, >
•	 __lt: This is equivalent to SQL's lower than operator, <
•	 __lte: This is equivalent to SQL's lower than or equal to operator, <=

For example, we will write the queryset that can return all the tasks with a duration
of greater than or equal to four hours:

tasks_list = Task.objects.filter(time_elapsed__gte=4)

Chapter 6

[69]

Performing an exclude query
The exclude queries can be useful in the context of a website. For example, we want
to get the list of projects that do not last for more than four hours:

from TasksManager.models import Task, Project
from django.shortcuts import renderdef page(request):
 tasks_list = Task.objects.filter(time_elapsed__gt=4)
 array_projects = tasks_list.values_list('project', flat=True).
distinct()
 projects_list = Project.objects.all()
 projects_list_lt4 = projects_list.exclude(id__in=array_projects)
 return render(request, 'en/public/index.html', {'action' : 'NOT IN
SQL equivalent', 'projects_list_lt4':projects_list_lt4})

The following is an explanation of the code snippet:

•	 In the first queryset, we first retrieve the list of all the tasks for which
time_elapsed is greater than 4

•	 In the second queryset, we got the list of all the related projects in these tasks
•	 In the third queryset, we got all the projects
•	 In the fourth queryset, we excluded all the projects with tasks that last for

more than 4 hours

Making a raw SQL query
Sometimes, developers may need to perform raw SQL queries. For this, we can
use the raw() method, defining the SQL query as an argument. The following is
an example that retrieves the first task:

first_task = Project.objects.raw("SELECT * FROM TasksManager_project")
[0]

To access the name of the first task, just use the following syntax:

first_task.title

Summary
In this chapter, we learned how to handle the database, thanks to the Django ORM.
Indeed, thanks to the ORM, the developer does not need to write SQL queries. In
the next chapter, we will learn how to create forms using Django.

Working with Django Forms
We all know about HTML forms. This is a <form> tag that contains the <input> and
<select> tags. The user can fill in or edit these items and return them to the server.
This is the preferred way to store data provided by the client. Frameworks such as
Django seized the HTML form to make it better.

A Django form is inherited from the Form class object. It is an object in which we
will set properties. These properties will be the fields in the form, and we will
define their type.

In this chapter, we will learn how to do the following:

•	 Create an HTML form
•	 Handle the data sent by a form
•	 Create a Django form
•	 Validate and manipulate data sent from a Django form
•	 Create forms based on models
•	 Customize error messages and use widgets

The advantages of Django forms are as follows:

•	 Protection against CSRF vulnerabilities can be easily implemented.
We'll talk about CSRF vulnerabilities thereafter.

•	 Data validation is automatic.
•	 Forms are easily customizable.

But the best way to compare a standard HTML form and a Django form is to practice
it with an example: the form to add a developer.

Working with Django Forms

[72]

Adding a developer without using Django
forms
In this section, we will show you how to add a developer without using Django
forms. This example will show the time that can be saved by using Django.

Add the following URL to your urls.py file:

url(r'^create-developer$', 'TasksManager.views.create_developer.page',
name="create_developer"),

Template of an HTML form
We will create a template before the view. Indeed, we are going to fill the view with
the template that contains the form. We do not put all the fields in the model because
the code is too long. It is better to learn using shorter code. The following is our
template in template/en/public/create_developer.html:

{% extends "base.html" %}
{% block title_html %}
 Create Developer
{% endblock %}
{% block h1 %}
 Create Developer
{% endblock %}
{% block article_content %}
 <form method="post" action="{% url "create_developer" %}" >
 <table>
 <tr>
 <td>Name</td>
 <td>
 <input type="text" name="name" />
 </td>
 </tr>
 <tr>
 <td>Login</td>
 <td>
 <input type="text" name="login" />
 </td>
 </tr>
 <tr>
 <td>Password</td>
 <td>
 <input type="text" name="password" />

Chapter 7

[73]

 </td>
 </tr>
 <tr>
 <td>Supervisor</td>
 <td>
 <select name="supervisor">
 {% for supervisor in supervisors_list %}
 <option value="{{ supervisor.id }}">{{ supervisor.name
}}</option>
 {% endfor %}
 </select>
 </td>
 </tr>
 <tr>
 <td></td>
 <td>
 <input type="submit" value="Valid" />
 </td>
 </tr>
 </table>
 </form>
{% endblock %}

Note that the template is impressive and yet it is a minimalist form.

The view using the POST data reception
The following screenshot shows the web page that we will create:

Working with Django Forms

[74]

The view that will process this form will be as follows. Save the view in the file
views/create_developer.py:

from django.shortcuts import render
from django.http import HttpResponse
from TasksManager.models import Supervisor, Developer
View for create_developer
def page(request):
 error = False
 # If form has posted
 if request.POST:
 # This line checks if the data was sent in POST. If so, this means
that the form has been submitted and we should treat it.
 if 'name' in request.POST:
 # This line checks whether a given data named name exists in the
POST variables.
 name = request.POST.get('name', '')
 # This line is used to retrieve the value in the POST
dictionary. Normally, we perform filters to recover the data to avoid
false data, but it would have required many lines of code.
 else:
 error=True
 if 'login' in request.POST:
 login = request.POST.get('login', '')
 else:
 error=True
 if 'password' in request.POST:
 password = request.POST.get('password', '')
 else:
 error=True
 if 'supervisor' in request.POST:
 supervisor_id = request.POST.get('supervisor', '')
 else:
 error=True
 if not error:
 # We must get the supervisor
 supervisor = Supervisor.objects.get(id = supervisor_id)
 new_dev = Developer(name=name, login=login, password=password,
supervisor=supervisor)
 new_dev.save()
 return HttpResponse("Developer added")
 else:
 return HttpResponse("An error as occured")
 else:
 supervisors_list = Supervisor.objects.all()
 return render(request, 'en/public/create_developer.html')

Chapter 7

[75]

In this view, we haven't even checked whether the supervisor exists. Even if the code
is functional, note that it requires a lot of lines and we haven't verified the contents of
the transmitted data.

We used the HttpResponse() method so that we do not have to create
additional templates. We also have no details about client errors when a
field is entered incorrectly.

If you want to verify whether your code works properly, do not forget to check the
data in the administration module.

To try this form, you can add the following line in the block article_content of the
index.html file:

Create developer

Adding a developer with Django forms
Django forms work with an object that inherits from the Form class. This object will
handle much of the work we have done manually in the previous example.

When displaying the form, it will generate the contents of the form template.
We may change the type of field that the object sends to the template if needed.

While receiving the data, the object will check the contents of each form element.
If there is an error, the object will send a clear error to the client. If there is no error,
we are certain that the form data is correct.

CSRF protection
Cross-Site Request Forgery (CSRF) is an attack that targets a user who is loading
a page that contains a malicious request. The malicious script uses the authentication
of the victim to perform unwanted actions, such as changing data or access to
sensitive data.

The following steps are executed during a CSRF attack:

1.	 Script injection by the attacker.
2.	 An HTTP query is performed to get a web page.
3.	 Downloading the web page that contains the malicious script.

Working with Django Forms

[76]

4.	 Malicious script execution.

In this kind of attack, the hacker can also modify information that may be critical for
the users of the website. Therefore, it is important for a web developer to know how
to protect their site from this kind of attack, and Django will help with this.

To re-enable CSRF protection, we must edit the settings.py file and uncomment
the following line:

'django.middleware.csrf.CsrfViewMiddleware',

This protection ensures that the data that has been sent is really sent from a specific
property page. You can check this in two easy steps:

1.	 When creating an HTML or Django form, we insert a CSRF token that will
store the server. When the form is sent, the CSRF token will be sent too.

2.	 When the server receives the request from the client, it will check the CSRF
token. If it is valid, it validates the request.

Do not forget to add the CSRF token in all the forms of the site where protection is
enabled. HTML forms are also involved, and the one we have just made does not
include the token. For the previous form to work with CSRF protection, we need
to add the following line in the form of tags and <form> </form>:

{% csrf_token %}

The view with a Django form
We will first write the view that contains the form because the template will display
the form defined in the view. Django forms can be stored in other files as forms.
py at the root of the project file. We include them directly in our view because the
form will only be used on this page. Depending on the project, you must choose
which architecture suits you best. We will create our view in the views/create_
developer.py file with the following lines:

from django.shortcuts import render
from django.http import HttpResponse

Chapter 7

[77]

from TasksManager.models import Supervisor, Developer
from django import forms
This line imports the Django forms package
class Form_inscription(forms.Form):
This line creates the form with four fields. It is an object that
inherits from forms.Form. It contains attributes that define the form
fields.
 name = forms.CharField(label="Name", max_length=30)
 login = forms.CharField(label="Login", max_length=30)
 password = forms.CharField(label="Password", widget=forms.
PasswordInput)
 supervisor = forms.ModelChoiceField(label="Supervisor",
queryset=Supervisor.objects.all())
View for create_developer
def page(request):
 if request.POST:
 form = Form_inscription(request.POST)
 # If the form has been posted, we create the variable that will
contain our form filled with data sent by POST form.
 if form.is_valid():
 # This line checks that the data sent by the user is consistent
with the field that has been defined in the form.
 name = form.cleaned_data['name']
 # This line is used to retrieve the value sent by the client. The
collected data is filtered by the clean() method that we will see
later. This way to recover data provides secure data.
 login = form.cleaned_data['login']
 password = form.cleaned_data['password']
 supervisor = form.cleaned_data['supervisor']
 # In this line, the supervisor variable is of the Supervisor
type, that is to say that the returned data by the cleaned_data
dictionary will directly be a model.
 new_developer = Developer(name=name, login=login,
password=password, email="", supervisor=supervisor)
 new_developer.save()
 return HttpResponse("Developer added")
 else:
 return render(request, 'en/public/create_developer.html',
{'form' : form})
 # To send forms to the template, just send it like any other
variable. We send it in case the form is not valid in order to display
user errors:
 else:
 form = Form_inscription()
 # In this case, the user does not yet display the form, it
instantiates with no data inside.
 return render(request, 'en/public/create_developer.html', {'form'
: form})

Working with Django Forms

[78]

This screenshot shows the display of the form with the display of an error message:

Template of a Django form
We set the template for this view. The template will be much shorter:

{% extends "base.html" %}
{% block title_html %}
 Create Developer
{% endblock %}
{% block h1 %}
 Create Developer
{% endblock %}
{% block article_content %}
 <form method="post" action="{% url "create_developer" %}" >
 {% csrf_token %}
 <!-- This line inserts a CSRF token. -->
 <table>
 {{ form.as_table }}
 <!-- This line displays lines of the form.-->
 </table>
 <p><input type="submit" value="Create" /></p>
 </form>
{% endblock %}

As the complete form operation is in the view, the template simply executes the
as_table() method to generate the HTML form.

The previous code displays data in tabular form. The three methods to generate
an HTML form structure are as follows:

•	 as_table: This displays fields in the <tr> <td> tags
•	 as_ul: This displays the form fields in the tags
•	 as_p: This displays the form fields in the <p> tags

Chapter 7

[79]

So, we quickly wrote a secure form with error handling and CSRF protection
through Django forms. In the Appendix, Cheatsheet, you can find the different
possible fields in a form.

The form based on a model
ModelForms are Django forms based on models. The fields of these forms are
automatically generated from the model that we have defined. Indeed, developers
are often required to create forms with fields that correspond to those in the
database to a non-MVC website.

These particular forms have a save() method that will save the form data in
a new record.

The supervisor creation form
To broach, we will take, for example, the addition of a supervisor.
For this, we will create a new page. For this, we will create the following URL:

url(r'^create-supervisor$', 'TasksManager.views.create_supervisor.
page', name="create_supervisor"),

Our view will contain the following code:

from django.shortcuts import render
from TasksManager.models import Supervisor
from django import forms
from django.http import HttpResponseRedirect
from django.core.urlresolvers import reverse
def page(request):
 if len(request.POST) > 0:
 form = Form_supervisor(request.POST)
 if form.is_valid():
 form.save(commit=True)
 # If the form is valid, we store the data in a model record in
the form.
 return HttpResponseRedirect(reverse('public_index'))
 # This line is used to redirect to the specified URL. We use the
reverse() function to get the URL from its name defines urls.py.
 else:
 return render(request, 'en/public/create_supervisor.html',
{'form': form})
 else:
 form = Form_supervisor()
 return render(request, 'en/public/create_supervisor.html',
{'form': form})

Working with Django Forms

[80]

class Form_supervisor(forms.ModelForm):
Here we create a class that inherits from ModelForm.
 class Meta:
 # We extend the Meta class of the ModelForm. It is this class that
will allow us to define the properties of ModelForm.
 model = Supervisor
 # We define the model that should be based on the form.
 exclude = ('date_created', 'last_connexion',)
 # We exclude certain fields of this form. It would also have been
possible to do the opposite. That is to say with the fields property,
we have defined the desired fields in the form.

As seen in the line exclude = ('date_created', 'last_connexion',),
it is possible to restrict the form fields. Both the exclude and fields properties
must be used correctly. Indeed, these properties receive a tuple of the fields to
exclude or include as arguments. They can be described as follows:

•	 exclude: This is used in the case of an accessible form by the administrator.
Because, if you add a field in the model, it will be included in the form.

•	 fields: This is used in cases in which the form is accessible to users.
Indeed, if we add a field in the model, it will not be visible to the user.

For example, we have a website selling royalty-free images with a registration form
based on ModelForm. The administrator adds a credit field in the extended model of
the user. If the developer has used an exclude property in some of the fields and did
not add credits, the user will be able to take as many credits as he/she wants.

We will resume our previous template, where we will change the URL present in the
attribute action of the <form> tag:

{% url "create_supervisor" %}

This example shows us that ModelForms can save you a lot of time in development
by having a form that can be customized (by modifying the validation, for example).

In the next chapter, we will see how to be faster with the class-based views.

Advanced usage of Django forms
We have studied the basics of the forms that allow you to create simple forms
with little customization. Sometimes, it is useful to customize aspects such as
data validation and error display, or use special graphics.

Chapter 7

[81]

Extending the validation form
It is useful to perform specific validation of the form fields. Django makes this easy
while reminding you of the advantages of the forms. We will take the example of
the addition of a developer form, where we will conduct an audit of the password.

For this, we will change the form in our view (in the create_developer.py file) in
the following manner:

class Form_inscription(forms.Form):
 name = forms.CharField(label="Name", max_length=30)
 login = forms.CharField(label = "Login")
 password = forms.CharField(label = "Password", widget = forms.
PasswordInput)
 # We add another field for the password. This field will be used
to avoid typos from the user. If both passwords do not match, the
validation will display an error message
 password_bis = forms.CharField(label = "Password", widget = forms.
PasswordInput)
 supervisor = forms.ModelChoiceField(label="Supervisor",
queryset=Supervisor.objects.all())
 def clean(self):
 # This line allows us to extend the clean method that is responsible
for validating data fields.
 cleaned_data = super (Form_inscription, self).clean()
 # This method is very useful because it performs the clean()
method of the superclass. Without this line we would be rewriting the
method instead of extending it.
 password = self.cleaned_data.get('password')
 # We get the value of the field password in the variable.
 password_bis = self.cleaned_data.get('password_bis')
 if password and password_bis and password != password_bis:
 raise forms.ValidationError("Passwords are not identical.")
 # This line makes us raise an exception. This way, when the view
performs the is_valid() method, if the passwords are not identical,
the form is not validated .
 return self.cleaned_data

With this example, we can see that Django is very flexible in the management of
forms and audits. It also allows you to customize the display of errors.

Working with Django Forms

[82]

Customizing the display of errors
Sometimes, it may be important to display user-specific error messages. For example,
a company may request for a password that must contain certain types of characters;
for example, the password must contain at least one number and many letters. In such
cases, it would be preferable to also indicate this in the error message. Indeed, users
read more carefully the error messages than help messages.

To do this, you must use the error_messages property in the form fields and set the
error message as a text string.

It is also possible to define different messages depending on the type of error. We
will create a dictionary of the two most common mistakes and give them a message.
We can define this dictionary as follows:

error_name = {
 'required': 'You must type a name !',
 'invalid': 'Wrong format.'
}

We will modify the name field of the Form_inscription form of create_
developer.py:

name = forms.CharField(label="Name", max_length=30, error_
messages=error_name)

This way, if the user doesn't fill the name field, he/she will see the following
message: You must type a name!.

To apply this message to ModelForm, we have to go to the models.py file and
modify the line that contains the name field.

name = models.CharField(max_length=50, verbose_name="Name", error_
messages=error_name)

When editing models.py, we should not forget to specify the error_name dictionary.

These error messages improve the quality of the website by informing the user of
his/her mistakes. It is very important to use custom errors on fields when validation
is complex. However, do not overdo it on the basic fields as this would be a waste of
time for the developer.

Using widgets
Widgets are an effective way to customize the display of the form elements. Indeed,
in some cases, it may be helpful to specify a text area field with particular dimensions
in ModelForm.

Chapter 7

[83]

To learn the practice of using widgets and continue the development of our
application, we will create the page of the creation of projects. This page will contain
a Django form, and we'll set the description field in the HTML <textarea> tag.

We need to add the following URL to the urls.py file:

url(r'^create_project$', ' TasksManager.views.create_project.page',
name='create_project'),

Then, create our view in the create_project.py file with the following code:

from django.shortcuts import render
from TasksManager.models import Project
from django import forms
from django.http import HttpResponseRedirect
from django.core.urlresolvers import reverse
class Form_project_create(forms.Form):
 title = forms.CharField(label="Title", max_length=30)
 description = forms.CharField(widget= forms.Textarea(attrs={'rows':
5, 'cols': 100,}))
 client_name = forms.CharField(label="Client", max_length=50)
def page(request):
 if request.POST:
 form = Form_project_create(request.POST)
 if form.is_valid():
 title = form.cleaned_data['title']
 description = form.cleaned_data['description']
 client_name = form.cleaned_data['client_name']
 new_project = Project(title=title, description=description,
client_name=client_name)
 new_project.save()
 return HttpResponseRedirect(reverse('public_index'))
 else:
 return render(request, 'en/public/create_project.html', {'form'
: form})
 else:
 form = Form_project_create()
 return render(request, 'en/public/create_project.html', {'form' :
form})

It is possible to take one of the templates that we have created and adapted. This
form will work the same way as all the Django forms that we have created. After
copying a template that we have already created, we only need to change the title
and URL of the action property of the <form> tag. By visiting the page, we notice
that the widget works well and displays a text area more suitable for long text.

Working with Django Forms

[84]

There are many other widgets to customize forms. A great quality of Django is that it
is generic and totally adaptable with time.

Setting initial data in a form
There are two ways to declare the initial value of form fields with Django.
The following examples take place in the create_developer.py file.

When instantiating the form
The following code will display new in the name field and will select the first
supervisor in the <select> field that defines the supervisor. These fields are
editable by the user:

form = Form_inscription(initial={'name': 'new', 'supervisor':
Supervisor.objects.all()[:1].get().id})

This line must replace the following line in the create_developer.py view:

form = Form_inscription()

When defining fields
To get the same effect as in the previous section, display new in the name field and
select the first supervisor in the corresponding field; you must change the declaration
name and supervisor fields with the following code:

name = forms.CharField(label="Name", max_length=30, initial="new")
supervisor = forms.ModelChoiceField(label="Supervisor",
queryset=Supervisor.objects.all(), initial=Supervisor.objects.all()
[:1].get().id)

Summary
In this chapter, we learned how to use Django forms. These forms allow you to save
a lot of time with automatic data validation and error display.

In the next chapter, we will go further into the generic actions and save even more
time with the forms.

Raising Your Productivity
with CBV

Class-based views (CBVs) are views generated from models. In simple terms,
we can say that these are like ModelForms, in that they simplify the view and
work for common cases.

CRUD is the short form we use when referring to the four major operations
performed on a database: create, read, update, and delete. CBV is the best way
to create pages that perform these actions very quickly.

Creating forms for creating and editing a model or database table data is a very
repetitive part of the job of a developer. They may spend a lot of time in doing
this properly (validation, prefilled fields, and so on). With CBV, Django allows a
developer to perform CRUD operations for a model in less than 10 minutes. They
also have an important advantage: if the model evolves and CBVs were well done,
changing the model will automatically change the CRUD operations within the
website. In this case, adding a line in our models allows us to save tens or hundreds
of lines of code.

CBVs still have a drawback. They are not very easy to customize with advanced
features or those that are not provided. In many cases, when you try to perform
a CRUD operation that has some peculiarities, it is better to create a new view.

You might ask why we did not directly study them—we could have saved a lot
of time, especially when adding a developer in the database. This is because these
views are generic. They are suitable for simple operations that do not require a lot
of changes. When we need a complex form, CBVs will not be useful and will even
extend the duration of programming.

We should use CBVs because they allow us to save a lot of time that would normally
be used in running CRUD operations on models.

Raising Your Productivity with CBV

[86]

In this chapter, we will make the most of our TasksManager application. Indeed, we
will enjoy the time savings offered by the CBVs to move quickly with this project. If
you do not understand the functioning of CBVs immediately, it doesn't matter. What
we have seen so far in previous chapters already allows us to make websites.

In this chapter, we will try to improve our productivity by covering the
following topics:

•	 We will use the CreateView CBV to quickly build the page to add projects
•	 We will see later how to display a list of objects and use the paging system
•	 We will then use the DetailView CBV to display the project information
•	 We will then learn how to change the data in a record with the UpdateView

CBV
•	 We will learn how to change the form generated by a CBV
•	 We will then create a page to delete a record
•	 Then, we will eventually create a child class of UpdateView to make using

it more flexible in our application

The CreateView CBV
The CreateView CBV allows you to create a view that will automatically generate
a form based on a model and automatically save the data in this form. It can be
compared to ModelForm, except that we do not need to create a view. Indeed,
all the code for this will be placed in the urls.py file except in special cases.

An example of minimalist usage
We will create a CBV that will allow us to create a project. This example aims to
show that you can save even more time than with Django forms. We will be able
to use the template used for the creation of forms in the previous chapter's project.
Now, we will change our create_project URL as follows:

url (r'^create_project$', CreateView.as_view(model=Project, template_
name="en/public/create_project.html", success_url = 'index'),
name="create_project"),

We will add the following lines at the beginning of the urls.py file:

from django.views.generic import CreateView
from TasksManager.models import Project

Chapter 8

[87]

In our new URL, we used the following new features:

•	 CreateView.as_view: We call the method as_view of the CBV CreateView.
This method returns a complete view to the user. Moreover, we return
multiple parameters in this method.

•	 model: This defines the model that will apply the CBV.
•	 template_name: This defines the template that will display the form. As

the CBV uses ModelForm, we do not need to change our create_project.
html template.

•	 success_url: This defines the URL to which we will be redirected once the
change has been taken into account. This parameter is not very DRY because
we cannot use the name property of the URL. When we extend our CBV, we
will see how to use the name of the URL to be redirected.

That's all! The three lines that we have added to the urls.py file will perform the
following actions:

•	 Generate the form
•	 Generate the view that sends the form to the template with or without errors
•	 Data is sent by the user

We just used one of the most interesting features of Django. Indeed, with only three
lines, we have been doing what would have taken more than a hundred lines without
any framework. We will also write the CBV that will allow us to add a task. Have a
look at the following code:

from TasksManager.models import Project, Task
url (r'^create_task$', CreateView.as_view(model=Task, template_
name="en/public/create_task.html", success_url = 'index'),
name="create_task"),

We then need to duplicate the create_project.html template and change the link in
the base.html template. Our new view is functional, and we used the same template
for project creation. This is a common method because it saves a lot of time for the
developer, but there is a more rigorous way to proceed.

To test the code, we can add the following link to the end of the article_content
block of the index.html template:

Create task

Raising Your Productivity with CBV

[88]

Working with ListView
ListView is a CBV that displays a list of records for a given model. The view is
generated to send a template object from which we view the list.

An example of minimalist usage
We will look at an example displaying the list of projects and create a link to the
details of a project. To do this, we must add the following lines in the urls.py file:

from TasksManager.models import Project
from django.views.generic.list import ListView

Add the following URLs to the file:

url (r'^project_list$', ListView.as_view(model=Project, template_
name="en/public/project_list.html"), name="project_list"),

We will create the template that will be used to display the results in a tabular form
by adding the following lines in the article_content block after extending the
base.html template:

<table>
<tr>
 <th>Title</th>
 <th>Description</th>
 <th>Client name</th>
</tr>
{% for project in object_list %}
 <tr>
 <td>{{ project.title }}</td>
 <td>{{ project.description }}</td>
 <td>{{ project.client_name }}</td>
 </tr>
{% endfor %}
</table>

We created the same list as in Chapter 6, Getting a Model's Data with Querysets, about
the queryset. The advantage is that we used a lot less lines and we did not use any
view to create it. In the next part, we will implement paging by extending this CBV.

Chapter 8

[89]

Extending ListView
It is possible to extend the possibilities of the ListView CBV and customize them.
This allows us to adapt the CBV to the needs of the websites. We can define the same
elements as in the parameters in the as_view method, but it will be more readable
and we can also override the methods. Depending on the type of CBV, spreading
them allows you to:

•	 Change the model and template as we did in the URL
•	 Change the queryset to be executed
•	 Change the name of the object sent to the template
•	 Specify the URL that will redirect the user

We will expand our first CBV by modifying the list of projects that we have done.
We will make two changes to this list by sorting by title and adding pagination. We
will create the ListView.py file in the views/cbv module. This file will contain our
customized listView. It is also possible to choose the architecture. For example,
we could create a file named project.py to store all the CBVs concerning the
projects. This file will contain the following code:

from django.views.generic.list import ListView

In this line, we import the ListView class
from TasksManager.models import Project

class Project_list(ListView):
In this line, we create a class that extends the ListView class.
 model=Project
 template_name = 'en/public/project_list.html'
In this line, we define the template_name the same manner as in the
urls.py file.
 paginate_by = 5
In this line, we define the number of visible projects on a single
page.
 def get_queryset(self):
In this line, we override the get_queryset() method to return our
queryset.
 queryset=Project.objects.all().order_by("title")
 return queryset

We could also have set the queryset in the following manner:

queryset=Project.objects.all().order_by("title")

Raising Your Productivity with CBV

[90]

However, it may be useful to create a class that can be adapted to many cases. For the
Project_list class to be interpreted in the URLs, we need to change our imports by
adding the following line:

from TasksManager.views.cbv.ListView import Project_list

You must then change the URL. In this urls.py file, we will use the Project_list
object without any parameters, as shown in the following code snippet; they are all
defined in the ListView.py file:

url (r'^project_list$', Project_list.as_view(), name="project_list"),

From now on, the new page is functional. If we test it, we will realize that only the
first five projects are displayed. Indeed, in the Project_list object, we defined a
pagination of five items per page. To navigate through the list, we need to add the
following code in the template before the end of the article_content block:

{% if is_paginated %}
 <div class="pagination">

 {% if page_obj.has_previous %}
 <a href="{% url "project_list" %}?page={{ page_obj.previous_
page_number }}">Previous
 {% endif %}

 Page {{ page_obj.number }} of {{ page_obj.paginator.num_pages
}}.

 {% if page_obj.has_next %}
 <a href="{% url "project_list" %}?page={{ page_obj.next_page_
number }}">Next
 {% endif %}

 </div>
{% endif %}

This part of the template allows us to create links to the preceding and following pages
at the bottom of the page. With this example, we created a sorted list of projects with
pagination very quickly. The extending of CBVs can be very convenient and allows us
to adapt to more complex uses. After this complete example, we will create a CBV to
display a list of developers. This list will be useful later in the book. We must add the
following URL after importing the ListView class:

url (r'^developer_list$', ListView.as_view(model=Developer, template_
name="en/public/developer_list.html"), name="developer_list"),

Chapter 8

[91]

We then use an inherited template of base.html and put the following code in the
article_content block:

<table>
 <tr>
 <td>Name</td>
 <td>Login</td>
 <td>Supervisor</td>
 </tr>
 {% for dev in object_list %}
 <tr>
 <td>{{ dev.name }}</td>
 <td>{{ dev.login }}</td>
 <td>{{ dev.supervisor }}</td>
 </tr>
 {% endfor %}
</table>

We will notice that the name of the developer is an empty link. You should refill it
when we create the page that displays the details of the developer. This is what we
will do in the next section with DetailView.

The DetailView CBV
The DetailView CBV allows us to display information from a registration model.
This is the first CBV we will study that has URL parameters. In order to view the
details of a record, it will send its ID to the CBV. We will study some examples.

An example of minimalist usage
First, we will create a page that will display the details of a task. For this, we will
create the URL by adding these lines in the urls.py file:

from django.views.generic import DetailView
from TasksManager.models import Task
url (r'^task_detail_(?P<pk>\d+)$', DetailView.as_view(model=Task,
template_name="en/public/task_detail.html"), name="task_detail"),

In this URL, we added the parameter-sending aspect. We have already discussed this
type of URL in an earlier chapter when we covered querysets.

This time, we really need to name the parameter pk; otherwise, the CBV
will not work. pk means primary key, and it will contain the ID of the
record you want to view.

Raising Your Productivity with CBV

[92]

Regarding the template, we will create the en/public/task_detail.html template
and place the following code in the article_content block:

<h4>
 {{ object.title }}
</h4>
<table>
 <tr>
 <td>Project : {{ object.project }}</td>
 <td>Developer : {{ object.app_user }}</td>
 </tr>
 <tr>
 <td>Importence : {{ object.importence }}</td>
 <td>Time elapsed : {{ object.time_elapsed }}</td>
 </tr>
</table>
<p>
 {{ object.description }}
</p>

In this code, we refer to the foreign keys Developer and Project. Using this syntax
in the template, we call the __ unicode__() of the model in question. This enables
the title of the project to be displayed. To test this piece of code, we need to create a
link to a parameterized URL. Add this line to your index.html file:

Detail first view

This line will allow us to see the details of the first task. You can try to create a list of
tasks and a link to DetailView in each row of the table. This is what we will do.

Extending DetailView
We will now create the page that displays the details of a developer and his/her
tasks. To get it done, we'll override the DetailView class by creating a DetailView.
py file in the views/cbv module and add the following lines of code:

from django.views.generic import DetailView
from TasksManager.models import Developer, Task

class Developer_detail(DetailView):
 model=Developer
 template_name = 'en/public/developer_detail.html'
 def get_context_data(self, **kwargs):
 # This overrides the get_context_data() method.
 context = super(Developer_detail, self).get_context_data(**kwargs)

Chapter 8

[93]

 # This allows calling the method of the super class. Without this
line we would not have the basic context.
 tasks_dev = Task.objects.filter(developer = self.object)
 # This allows us to retrieve the list of developer tasks. We use
self.object, which is a Developer type object already defined by the
DetailView class.
 context['tasks_dev'] = tasks_dev
 # In this line, we add the task list to the context.
 return context

We need to add the following lines of code to the urls.py file:

from TasksManager.views.cbv.DetailView import Developer_detail
url (r'^developer_detail_(?P<pk>\d+)$', Developer_detail.as_view(),
name="developer_detail"),

To see the main data and develop tasks, we create the developer_detail.html
template. After extending from base.html, we must enter the following lines in the
article_content block:

<h4>
 {{ object.name }}
</h4>
Login : {{ object.login }}

Email : {{ object.email }}
<h3>Tasks</h3>
<table>
 {% for task in tasks_dev %}
 <tr>
 <td>{{ task.title }}</td>
 <td>{{ task.importence }}</td>
 <td>{{ task.project }}</td>
 </tr>
 {% endfor %}
</table>

This example has allowed us to see how to send data to the template while
using CBVs.

Raising Your Productivity with CBV

[94]

The UpdateView CBV
UpdateView is the CBV that will create and edit forms easily. This is the CBV that saves
more time compared to developing without the MVC pattern. As with DetailView,
we will have to send the logins of the record to the URL. To address UpdateView,
we will discuss two examples:

•	 Changing a task for the supervisor to be able to edit a task
•	 Reducing the time spent to perform a task to develop

An example of minimalist usage
This example will show how to create the page that will allow the supervisor
to modify a task. As with other CBVs, we will add the following lines in the
urls.py file:

from django.views.generic import UpdateView
url (r'^update_task_(?P<pk>\d+)$', UpdateView.as_view(model=Task,
template_name="en/public/update_task.html", success_url="index"),
name="update_task"),

We will write a very similar template to the one we used for CreateView. The only
difference (except the button text) will be the action field of the form, which we
will define as empty. We will see how to fill the field at the end of this chapter. For
now, we will make use of the fact that browsers submit the form to the current page
when the field is empty. It remains visible so users can write the content to include
in our article_content block. Have a look at the following code:

<form method="post" action="">
 {% csrf_token %}
 <table>
 {{ form.as_table }}
 </table>
 <p><input type="submit" value="Update" /></p>
</form>

This example is really simple. It could have been more DRY if we entered the name
of the URL in the success_url property.

Extending the UpdateView CBV
In our application, the life cycle of a task is the following:

•	 The supervisor creates the task without any duration
•	 When the developer has completed the task, they save their working time

Chapter 8

[95]

We will work on the latter point, where the developer can only change the duration
of the task. In this example, we will override the UpdateView class. To do this, we
will create an UpdateView.py file in the views/cbv module. We need to add the
following content:

from django.views.generic import UpdateView
from TasksManager.models import Task
from django.forms import ModelForm
from django.core.urlresolvers import reverse

class Form_task_time(ModelForm):
In this line, we create a form that extends the ModelForm. The
UpdateView and CreateView CBV are based on a ModelForm system.
 class Meta:
 model = Task
 fields = ['time_elapsed']
 # This is used to define the fields that appear in the form. Here
there will be only one field.

class Task_update_time(UpdateView):
 model = Task
 template_name = 'en/public/update_task_developer.html'
form_class = Form_task_time
In this line, we impose your CBV to use the ModelForm we created.
When you do not define this line, Django automatically generates a
ModelForm.
 success_url = 'public_empty'
 # This line sets the name of the URL that will be seen once the
change has been completed.
 def get_success_url(self):
 # In this line, when you put the name of a URL in the success_url
property, we have to override this method. The reverse() method
returns the URL corresponding to a URL name.
 return reverse(self.success_url)

We may use this CBV with the following URL:

from TasksManager.views.cbv.UpdateView import Task_update_time

url (r'^update_task_time_(?P<pk>\d+)$', Task_update_time.as_view(),
name = "update_task_time"),

For the update_task_developer.html template, we just need to duplicate the
update_task.html template and modify its titles.

Raising Your Productivity with CBV

[96]

The DeleteView CBV
The DeleteView CBV can easily delete a record. It does not save a lot of time
compared to a normal view, but it cannot be burdened with unnecessary views.
We will show an example of task deletion. For this, we need to create the
DeleteView.py file in the views/cbv module. Indeed, we need to override
it because we will enter the name of the URL that we want to redirect. We can
only put the URL in success_url, but we want our URL to be as DRY as possible.
We will add the following code in the DeleteView.py file:

from django.core.urlresolvers import reverse
from django.views.generic import DeleteView
from TasksManager.models import Task

class Task_delete(DeleteView):
 model = Task
 template_name = 'en/public/confirm_delete_task.html'
 success_url = 'public_empty'
 def get_success_url(self):
 return reverse(self.success_url)

In the preceding code, the template will be used to confirm the deletion. Indeed,
the DeleteView CBV will ask for user confirmation before deleting. We will add
the following lines in the urls.py file to add the URL of the deletion:

from TasksManager.views.cbv.DeleteView import Task_delete
url(r'task_delete_(?P<pk>\d+)$', Task_delete.as_view(), name="task_
delete"),

To finish our task suppression page, we will create the confirm_delete_task.
html template by extending base.html with the following content in the article_
content block:

<h3>Do you want to delete this object?</h3>
<form method="post" action="">
 {% csrf_token %}
 <table>
 {{ form.as_table }}
 </table>
 <p><input type="submit" value="Delete" /></p>
</form>

Chapter 8

[97]

Going further by extending the CBV
CBVs allow us to save a lot of time during page creation by performing CRUD
actions with our models. By extending them, it is possible to adapt them to our use
and save even more time.

Using a custom class CBV update
To finish our suppression page, in this chapter, we have seen that CBVs allow us to
not be burdened with unnecessary views. However, we have created many templates
that are similar, and we override the CBV only to use the DRY URLs. We will fix these
small imperfections. In this section, we will create a CBV and generic template that will
allow us to:

•	 Use this CBV directly in the urls.py file
•	 Enter the name property URLs for redirection
•	 Benefit from a template for all uses of these CBVs

Before writing our CBV, we will modify the models.py file, giving each model
a verbose_name property and verbose_name_plural. For this, we will use the
Meta class. For example, the Task model will become the following:

class Task(models.Model):
 # fields
 def __str__(self):
 return self.title
 class Meta:
 verbose_name = "task"
 verbose_name_plural = "tasks"	

We will create an UpdateViewCustom.py file in the views/cbv folder and add the
following code:

from django.views.generic import UpdateView
from django.core.urlresolvers import reverse

class UpdateViewCustom(UpdateView):
 template_name = 'en/cbv/UpdateViewCustom.html'
 # In this line, we define the template that will be used for all the
CBVs that extend the UpdateViewCustom class. This template_name field
can still be changed if we need it.
 url_name=""
 # This line is used to create the url_name property. This property
will help us to define the name of the current URL. In this way, we
can add the link in the action attribute of the form.

Raising Your Productivity with CBV

[98]

 def get_success_url(self):
 # In this line, we override the get_success_url() method by default,
this method uses the name URLs.
 return reverse(self.success_url)
 def get_context_data(self, **kwargs):
 # This line is the method we use to send data to the template.
 context = super(UpdateViewCustom, self).get_context_data(**kwargs)
 # In this line, we perform the super class method to send normal
data from the CBV UpdateView.
 model_name = self.model._meta.verbose_name.title()
 # In this line, we get the verbose_name property of the defined
model.
 context['model_name'] = model_name
 # In this line, we send the verbose_name property to the template.
 context['url_name'] = self.url_name \
 # This line allows us to send the name of our URL to the template.
 return context

We then need to create the template that displays the form. For this, we need to
create the UpdateViewCustom.html file and add the following content:

{% extends "base.html" %}
{% block title_html %}
 Update a {{ model_name }}
 <!-- In this line, we show the type of model we want to change here.
-->
{% endblock %}
{% block h1 %}
 Update a {{ model_name }}
{% endblock %}
{% block article_content %}
 <form method="post" action="{% url url_name object.id %}"> <!-- line
2 -->
 <!-- In this line, we use our url_name property to redirect the form
to the current page. -->
 {% csrf_token %}
 <table>
 {{ form.as_table }}
 </table>
 <p><input type="submit" value="Update" /></p>
 </form>
{% endblock %}

To test these new CBVs, we will change the update_task URL in the
following manner:

Chapter 8

[99]

url (r'^update_task_(?P<pk>\d+)$', UpdateViewCustom.as_
view(model=Task, url_name="update_task", success_url="public_empty"),
name="update_task"),

The following is a screenshot that shows what the CBV will display:

Summary
In this chapter, we have learned how to use one of the most powerful features of
Django: CBVs. With them, developers can run efficient CRUD operations.

We also learned how to change CBVs to suit our use by adding pagination on a list of
items or displaying the work of a developer on the page that displays the information
for this user.

In the next chapter, we will learn how to use session variables. We will explore this
with a practical example. In this example, we will modify the task list to show the
last task accessed.

Using Sessions
Sessions are variables stored by the server according to the user. On many websites,
it is useful to keep user data as an identifier, a basket, or a configuration item. For
this, Django stores this information in the database. It then randomly generates
a string as a hash code that is transmitted to the client as a cookie. This way of
working allows you to store a lot of information about the user while minimizing the
exchange of data between the server and client, for example, the type of identifier
that the server can generate.

In this chapter, we will do the following:

•	 Study how session variables work with the Django framework
•	 Learn how to create and retrieve a session variable
•	 Study session variables with a practical and useful example
•	 Make ourselves aware of the safety of using session variables

Firebug is a plugin for Firefox. This is a handy tool for a web developer; it allows you
to do the following:

•	 Display the JavaScript console to read errors
•	 Read and edit the HTML code of the page from the browser
•	 View the cookies used by the website consulted

Cookies realized with Firebug

Using Sessions

[102]

In this screenshot realized with Firebug, we notice that we have two cookies:

•	 sessionid: This is our session ID. It is with this identifier that Django will
know with which user it processes.

•	 csrftoken: This cookie is typical Django. We already spoke about it in the
chapter about forms. It won't be used in this chapter.

The following is a screenshot of the table where session data is stored:

Sessions are very useful, especially for authentication systems. Indeed, in many cases,
when a user connects to a website, we record their identifier in the session variable.
Thus, with each HTTP request, the user sends this identifier to inform the site about
their status. This is also an essential system to make the administration module work,
which we will see in a later chapter. However, sessions have a disadvantage if they are
not regularly removed: they take more space in the database. To use sessions in Django,
the django.contrib.sessions.middleware.SessionMiddleware middleware must
be enabled and the browser must accept cookies.

The life cycle of a session is explained as follows:

1.	 The user who does not have any session makes an HTTP request to
the website.

2.	 The server generates a session identifier and sends it to the browser along
with the page requested by the user.

3.	 Whenever the browser makes a request, it will automatically send the
session identifier.

4.	 Depending on the configuration of the system administrator, the server
periodically checks if there are expired sessions. If this is the case, it may
be deleted.

Chapter 9

[103]

Creating and getting session variables
With Django, storage in a database, generation of the hash code, and exchanges
with the client will be transparent. Sessions are stored in the context represented
by the request variable. To save a value in a session variable, we must use the
following syntax:

request.session['session_var_name'] = "Value"

Once the session variable is registered, you must use the following syntax to recover it:

request.session['session_var_name']

To use these lines, we have to be sure to interact with the request context. Indeed, in
some cases, such as CBV, we do not have simple access to the request context.

An example – showing the last task consulted
In this example, we will show a practical example of using session variables. In
general, a developer consults the tasks to be done. He/she selects one task, studies it,
and then realizes and notes the time spent. We will store the identifier of the last
task accessed in a session variable, and we will display it at the top of the tasks list
to be carried out.

For this, we will no longer use the DetailView CBV to display the details of a task,
but we will use a real view. First, we must define the URL that will allow us to see
our view. For this, we will modify the task_detail URL with the following code:

url (r'^task_detail_(?P<pk>\d+)$', 'TasksManager.views.task_detail.
page', name="task_detail"),

We will create our view in the views/task_detail.py file with the following code:

from django.shortcuts import render
from TasksManager.models import Task
from django.http import HttpResponseRedirect
from django.core.urlresolvers import reverse
def page(request, pk):
 check_task = Task.objects.filter(id = pk)
 # This line is used to retrieve a queryset of the elements whose ID
property matches to the parameter pk sent to the URL. We will use this
queryset in the following line : task = check_task.get().

 try:
 # This is used to define an error handling exception to the next
line.
 task = check_task.get()

Using Sessions

[104]

 # This line is used to retrieve the record in the queryset.
 except (Task.DoesNotExist, Task.MultipleObjectsReturned):
 # This allows to process the two kind of exceptions: DoesNotExist
and MultipleObjectsReturned. The DoesNotExist exception type is raised
if the queryset has no records. The MultipleObjectsReturned exception
type is raised if queryset contains multiple records.
 return HttpResponseRedirect(reverse('public_empty'))
 # This line redirects the user if an exception is thrown. We could
also redirect to an error page.
 else:
 request.session['last_task'] = task.id
 # This line records the ID property of the task in a session
variable named last_task.
 #In this line, we use the same template that defines the form CBV
DetailView. Without having to modify the template, we send our task in
a variable named object.
 return render(request, 'en/public/task_detail.html', {'object' :
task})

We will then create a list of the tasks with the ListView CBV. To do this, we must
add the following URL to the urls.py file:

url (r'^task_list$', 'TasksManager.views.task_list.page', name="task_
list"),

The corresponding view for this URL is as follows:

from django.shortcuts import render
from TasksManager.models import Task
from django.core.urlresolvers import reverse
def page(request):
 tasks_list = Task.objects.all()
 # This line is used to retrieve all existing tasks databases.
 last_task = 0
 # In this line, we define last_task variable with a null value
without generating a bug when using the render() method.
 if 'last_task' in request.session:
 # This line is used to check whether there is a session variable
named last_task.
 last_task = Task.objects.get(id = request.session['last_task'])
 # In this line, we get the recording of the last task in our last_
task variable.
 tasks_list = tasks_list.exclude(id = request.session['last_task'])
 # In this line, we exclude the last task for the queryset to not
have duplicates.
 return render(request, 'en/public/tasks_list.html', {'tasks_list':
tasks_list, 'last_task' : last_task})

Chapter 9

[105]

We will then create the template for our list. This example will be complete because
this list will create, read, update, and delete tasks. The following code must be placed
in the tasks_list.html file:

{% extends "base.html" %}
{% block title_html %}
 Tasks list
{% endblock %}
{% block article_content %}
 <table>
 <tr>
 <th>Title</th>
 <th>Description</th>
 <th colspan="2">Create</th>
 </tr>
 {% if last_task %}

 <!-- This line checks to see if we have a record in the last_task
variable. If this variable has kept the value 0, the condition will
not be validated. In this way, the last accessed task will display at
the beginning of the list.-->
 <tr class="important">
 <td>{{ last_task.
title }}</td>
 <td>{{ last_task.description|truncatechars:25 }}</td>
 <td>Edit</td>
 <td>Delete</
td>
 </tr>
 {% endif %}
 {% for task in tasks_list %}
 <!-- This line runs through the rest of the tasks and displays. -->
 <tr>
 <td>{{ task.title }}</
a></td>
 <td>{{ task.description|truncatechars:25 }}</td>
 <td>Edit</td>
 <td>Delete</td>
 </tr>
 {% endfor %}
 </table>
{% endblock %}

Using Sessions

[106]

For this example to be complete, we must add the following lines in the style.css
file that we have created:

tr.important td {
 font-weight:bold;
}

These lines are used to highlight the row of the last task consulted.

About session security
Session variables are not modifiable by the user because they are stored by the
server, unless if in your website you choose to store data sent by the client. However,
there is a type of flaw that uses the system session. Indeed, if a user cannot change
their session variables, they may try to usurp another user session.

We will imagine a realistic attack scenario. We are in a company that uses a website
to centralize e-mails and the schedule of each employee. An employee we appoint,
Bob, is very interested in one of his colleagues, Alicia. He wants to read her e-mails
to learn more about her. One day, when she goes to take her coffee in the break
room, Bob sits at Alicia's computer. Like all employees, he uses the same password
to ease administration, and he can easily connect to Alicia's PC. Luckily, the browser
has been left open. Besides, the browser periodically contacts the server to see if
new messages have arrived so that the session does not have time to expire. He
downloads a tool such as Firebug that allows him to read cookies. He retrieves
the hash, erases the traces, and returns to his computer. He changes the ID session
cookies in his browser; therefore, he has access to all the information about Alicia.
Moreover, when there is no encryption, this kind of attack can be done remotely in
a local network that sniffs network traffic. This is called session fixation. To protect
ourselves from this kind of attack, it is possible to take a few measures:

•	 Encrypt communications between the server and client with SSL, for example.
•	 Ask the user to enter a password before they can access sensitive information,

such as banking information.
•	 Conduct an audit of the IP address and session number. Disconnect the

user if he/she changes his/her IP address. Notwithstanding this measure,
the attacker can perform an IP spoofing to usurp the IP's victim.

Chapter 9

[107]

Summary
In this chapter, we managed to save data related to a user. This data is stored for the
whole duration of the session. It cannot be modified directly by the user.

We also studied the safety sessions. Keep in mind that a user session can be stolen by
an attacker. Depending on the size of the project, it is necessary to take measures to
secure the website.

In the next chapter, we will learn how to use the authentication module. It will allow
us to create users and restrict access to certain pages to the logged-in users.

The Authentication Module
The authentication module saves a lot of time in creating space for users.
The following are the main advantages of this module:

•	 The main actions related to users are simplified (connection, account
activation, and so on)

•	 Using this system ensures a certain level of security
•	 Access restrictions to pages can be done very easily

It's such a useful module that we have already used it without noticing. Indeed, access
to the administration module is performed by the authentication module. The user we
created during the generation of our database was the first user of the site.

This chapter greatly alters the application we wrote earlier. At the end of this
chapter, we will have:

•	 Modified our UserProfile model to make it compatible with the module
•	 Created a login page
•	 Modified the addition of developer and supervisor pages
•	 Added the restriction of access to connected users

How to use the authentication module
In this section, we will learn how to use the authentication module by making our
application compatible with the module.

The Authentication Module

[110]

Configuring the Django application
There is normally nothing special to do for the administration module to work in our
TasksManager application. Indeed, by default, the module is enabled and allows us to
use the administration module. However, it is possible to work on a site where the web
Django authentication module has been disabled. We will check whether the module
is enabled.

In the INSTALLED_APPS section of the settings.py file, we have to check the
following line:

'django.contrib.auth',

Editing the UserProfile model
The authentication module has its own User model. This is also the reason why
we have created a UserProfile model and not just User. It is a model that already
contains some fields, such as nickname and password. To use the administration
module, you have to use the User model on the Python33/Lib/site-package/
django/contrib/auth/models.py file.

We will modify the UserProfile model in the models.py file that will become the
following:

class UserProfile(models.Model):
 user_auth = models.OneToOneField(User, primary_key=True)
 phone = models.CharField(max_length=20, verbose_name="Phone number",
null=True, default=None, blank=True)
 born_date = models.DateField(verbose_name="Born date", null=True,
default=None, blank=True)
 last_connexion = models.DateTimeField(verbose_name="Date of last
connexion", null=True, default=None, blank=True)
years_seniority = models.IntegerField(verbose_name="Seniority",
default=0)
def __str__(self):
 return self.user_auth.username

We must also add the following line in models.py:

from django.contrib.auth.models import User

In this new model, we have:

•	 Created a OneToOneField relationship with the user model we imported
•	 Deleted the fields that didn't exist in the user model

Chapter 10

[111]

The OneToOne relation means that for each recorded UserProfile model, there will
be a record of the User model. In doing all this, we deeply modify the database. Given
these changes and because the password is stored as a hash, we will not perform the
migration with South.

It is possible to keep all the data and do a migration with South, but we should
develop a specific code to save the information of the UserProfile model to the
User model. The code should also generate a hash for the password, but it would be
long and it is not the subject of the book. To reset South, we must do the following:

•	 Delete the TasksManager/migrations folder and all the files contained in
this folder

•	 Delete the database.db file

To use the migration system, we have to use the following commands already used
in the chapter about models:

manage.py schemamigration TasksManager --initial
manage.py syncdb –migrate

After the deletion of the database, we must remove the initial data in
create_developer.py. We must also delete the URL developer_detail
and the following line in index.html:

Detail second developer
(The second user must be a developer)

Adding a user
The pages that allow you to add a developer and supervisor no longer work because
they are not compatible with our recent changes. We will change these pages to
integrate our style changes. The view contained in the create_supervisor.py file
will contain the following code:

from django.shortcuts import render
from TasksManager.models import Supervisor
from django import forms
from django.http import HttpResponseRedirect
from django.core.urlresolvers import reverse

from django.contrib.auth.models import User
def page(request):
 if request.POST:
 form = Form_supervisor(request.POST)
 if form.is_valid():

The Authentication Module

[112]

 name = form.cleaned_data['name']
 login = form.cleaned_data['login']
 password = form.cleaned_data['password']
 specialisation = form.cleaned_data['specialisation']
 email = form.cleaned_data['email']
 new_user = User.objects.create_user(username = login, email =
email, password=password)
 # In this line, we create an instance of the User model with
the create_user() method. It is important to use this method because
it can store a hashcode of the password in database. In this way, the
password cannot be retrieved from the database. Django uses the PBKDF2
algorithm to generate the hash code password of the user.
 new_user.is_active = True
 # In this line, the is_active attribute defines whether the user
can connect or not. This attribute is false by default which allows
you to create a system of account verification by email, or other
system user validation.
 new_user.last_name=name
 # In this line, we define the name of the new user.
 new_user.save()
 # In this line, we register the new user in the database.
 new_supervisor = Supervisor(user_auth = new_user,
specialisation=specialisation)
 # In this line, we create the new supervisor with the form data.
We do not forget to create the relationship with the User model by
setting the property user_auth with new_user instance.
 new_supervisor.save()
 return HttpResponseRedirect(reverse('public_empty'))
 else:
 return render(request, 'en/public/create_supervisor.html',
{'form' : form})
 else:
 form = Form_supervisor()
 form = Form_supervisor()
 return render(request, 'en/public/create_supervisor.html', {'form' :
form})
class Form_supervisor(forms.Form):
 name = forms.CharField(label="Name", max_length=30)
 login = forms.CharField(label = "Login")
 email = forms.EmailField(label = "Email")
 specialisation = forms.CharField(label = "Specialisation")
 password = forms.CharField(label = "Password", widget = forms.
PasswordInput)
 password_bis = forms.CharField(label = "Password", widget = forms.
PasswordInput)
 def clean(self):
 cleaned_data = super (Form_supervisor, self).clean()
 password = self.cleaned_data.get('password')

Chapter 10

[113]

 password_bis = self.cleaned_data.get('password_bis')
 if password and password_bis and password != password_bis:
 raise forms.ValidationError("Passwords are not identical.")
 return self.cleaned_data

The create_supervisor.html template remains the same, as we are using
a Django form.

You can change the page() method in the create_developer.py file to make it
compatible with the authentication module (you can refer to downloadable
Packt code files for further help):

def page(request):
 if request.POST:
 form = Form_inscription(request.POST)
 if form.is_valid():
 name = form.cleaned_data['name']
 login = form.cleaned_data['login']
 password = form.cleaned_data['password']
 supervisor = form.cleaned_data['supervisor']
 new_user = User.objects.create_user(username = login,
password=password)
 new_user.is_active = True
 new_user.last_name=name
 new_user.save()
 new_developer = Developer(user_auth = new_user,
supervisor=supervisor)
 new_developer.save()
 return HttpResponse("Developer added")
 else:
 return render(request, 'en/public/create_developer.html',
{'form' : form})
 else:
 form = Form_inscription()
 return render(request, 'en/public/create_developer.html', {'form'
: form})

We can also modify developer_list.html with the following content:

{% extends "base.html" %}
{% block title_html %}
 Developer list
{% endblock %}
{% block h1 %}
 Developer list

The Authentication Module

[114]

{% endblock %}
{% block article_content %}
 <table>
 <tr>
 <td>Name</td>
 <td>Login</td>
 <td>Supervisor</td>
 </tr>
 {% for dev in object_list %}
 <tr>
 <!-- The following line displays the __str__ method of
the model. In this case it will display the username of the developer
-->
 <td>{{ dev }}</td>
 <!-- The following line displays the last_name of the
developer -->
 <td>{{ dev.user_auth.last_name }}</td>
 <!-- The following line displays the __str__ method of
the Supervisor model. In this case it will display the username of the
supervisor -->
 <td>{{ dev.supervisor }}</td>
 </tr>
 {% endfor %}
 </table>
{% endblock %}

Login and logout pages
Now that you can create users, you must create a login page to allow the user to
authenticate. We must add the following URL in the urls.py file:

url(r'^connection$', 'TasksManager.views.connection.page',
name="public_connection"),

You must then create the connection.py view with the following code:

from django.shortcuts import render
from django import forms
from django.contrib.auth import authenticate, login
This line allows you to import the necessary functions of the
authentication module.
def page(request):
 if request.POST:
 # This line is used to check if the Form_connection form has been
posted. If mailed, the form will be treated, otherwise it will be
displayed to the user.
 form = Form_connection(request.POST)

Chapter 10

[115]

 if form.is_valid():
 username = form.cleaned_data["username"]
 password = form.cleaned_data["password"]
 user = authenticate(username=username, password=password)
 # This line verifies that the username exists and the password
is correct.
 if user:
 # In this line, the authenticate function returns None if
authentication has failed, otherwise it returns an object that
validates the condition.
 login(request, user)

 # In this line, the login() function allows the user to
connect.
 else:
 return render(request, 'en/public/connection.html', {'form' :
form})
 else:
 form = Form_connection()
 return render(request, 'en/public/connection.html', {'form' : form})
class Form_connection(forms.Form):
 username = forms.CharField(label="Login")
 password = forms.CharField(label="Password", widget=forms.
PasswordInput)
 def clean(self):
 cleaned_data = super(Form_connection, self).clean()
 username = self.cleaned_data.get('username')
 password = self.cleaned_data.get('password')
 if not authenticate(username=username, password=password):
 raise forms.ValidationError("Wrong login or password")
 return self.cleaned_data

You must then create the connection.html template with the following code:

{% extends "base.html" %}
{% block article_content %}
 {% if user.is_authenticated %}
 <-- This line checks if the user is connected.-->
 <h1>You are connected.</h1>
 <p>
 Your email : {{ user.email }}
 <-- In this line, if the user is connected, this line will
display his/her e-mail address.-->
 </p>
 {% else %}
 <!-- In this line, if the user is not connected, we display the
login form.-->

The Authentication Module

[116]

 <h1>Connexion</h1>
 <form method="post" action="{{ public_connection }}">
 {% csrf_token %}
 <table>
 {{ form.as_table }}
 </table>
 <input type="submit" class="button" value="Connection" />
 </form>
 {% endif %}
{% endblock %}

When the user logs in, Django will save his/her data connection in session variables.
This example has allowed us to verify that the audit login and password was
transparent to the user. Indeed, the authenticate() and login() methods allow
the developer to save a lot of time. Django also provides convenient shortcuts
for the developer such as the user.is_authenticated attribute that checks if the
user is logged in. Users prefer when a logout link is present on the website, especially
when connecting from a public computer. We will now create the logout page.

First, we need to create the logout.py file with the following code:

from django.shortcuts import render
from django.contrib.auth import logout
def page(request):
 logout(request)
 return render(request, 'en/public/logout.html')

In the previous code, we imported the logout() function of the authentication
module and used it with the request object. This function will remove the user
identifier of the request object, and delete flushes their session data.

When the user logs out, he/she needs to know that the site was actually
disconnected. Let's create the following template in the logout.html file:

{% extends "base.html" %}
{% block article_content %}
 <h1>You are not connected.</h1>
{% endblock %}

Chapter 10

[117]

Restricting access to the connected
members
When developers implement an authentication system, it's usually to limit access
to anonymous users. In this section, we'll see two ways to control access to our
web pages.

Restricting access to views
The authentication module provides simple ways to prevent anonymous users from
accessing some pages. Indeed, there is a very convenient decorator to restrict access
to a view. This decorator is called login_required.

In the example that follows, we will use the designer to limit access to the page()
view from the create_developer module in the following manner:

1.	 First, we must import the decorator with the following line:
from django.contrib.auth.decorators import login_required

2.	 Then, we will add the decorator just before the declaration of the view:
@login_required
def page(request): # This line already exists. Do not copy it.

3.	 With the addition of these two lines, the page that lets you add a developer
is only available to the logged-in users. If you try to access the page without
being connected, you will realize that it is not very practical because the
obtained page is a 404 error. To improve this, simply tell Django what the
connection URL is by adding the following line in the settings.py file:
LOGIN_URL = 'public_connection'

4.	 With this line, if the user tries to access a protected page, he/she will be
redirected to the login page. You may have noticed that if you're not logged
in and you click the Create a developer link, the URL contains a
parameter named next. The following is the screen capture of the URL:

5.	 This parameter contains the URL that the user tried to consult. The
authentication module redirects the user to the page when he/she connects.
To do this, we will modify the connection.py file we created. We add the
line that imports the render() function to import the redirect() function:
from django.shortcuts import render, redirect

The Authentication Module

[118]

6.	 To redirect the user after they log in, we must add two lines after the line that
contains the code login (request, user). There are two lines to be added:

if request.GET.get('next') is not None:
 return redirect(request.GET['next'])

This system is very useful when the user session has expired and he/she wants to
see a specific page.

Restricting access to URLs
The system that we have seen does not simply limit access to pages generated by
CBVs. For this, we will use the same decorator, but this time in the urls.py file.

We will add the following line to import the decorator:

from django.contrib.auth.decorators import login_required

We need to change the line that corresponds to the URL named create_project:

url (r'^create_project$', login_required(CreateView.as_
view(model=Project, template_name="en/public/create_project.html",
success_url = 'index')), name="create_project"),

The use of the login_required decorator is very simple and allows the developer
to not waste too much time.

Summary
In this chapter, we modified our application to make it compatible with the
authentication module. We created pages that allow the user to log in and log
out. We then learned how to restrict access to some pages for the logged in users.

In the next chapter, we will improve the usability of the application with the addition
of AJAX requests. We will learn the basics of jQuery and then learn how to use it to
make an asynchronous request to the server. Also, we will learn how to handle the
response from the server.

Using AJAX with Django
AJAX is an acronym for Asynchronous JavaScript and XML. This technology allows
a browser to asynchronously communicate with the server using JavaScript.
Refreshing the web page is not necessarily required to perform an action on the
server.

Many web applications have been released that run on AJAX. A web application
is often described as a website containing only one page and which performs all
operations with an AJAX server.

If you are not using a library, using AJAX requires a lot of lines of code to be
compatible with several browsers. When including jQuery, it is possible to make
easy AJAX requests while at the same time being compatible with many browsers.

In this chapter, we will cover:

•	 Working with JQuery
•	 JQuery basics
•	 Working with AJAX in the task manager

Working with jQuery
jQuery is a JavaScript library designed to effectively manipulate the DOM of the
HTML page. The DOM (Document Object Model) is the internal structure of the
HTML code, and jQuery greatly simplifies the handling.

The following are some advantages of jQuery:

•	 DOM manipulation is possible with CSS 1-3 selectors
•	 It integrates AJAX
•	 It is possible to animate the page with visual effects

Using AJAX with Django

[120]

•	 Good documentation with numerous examples
•	 Many libraries have been created around jQuery

jQuery basics
In this chapter, we use jQuery to make AJAX requests. Before using jQuery,
let's understand its basics.

CSS selectors in jQuery
CSS selectors used in style sheets can effectively retrieve an item with very little
code. This is a feature that is so interesting that it is implemented in the HTML5
Selector API with the following syntax:

item = document.querySelector('tag#id_content');

jQuery also allows us to use CSS selectors. To do the same thing with jQuery,
you must use the following syntax:

item = $('tag#id_content');

At the moment, it is better to use jQuery than the Selector API because jQuery 1.x.x
guarantees great compatibility with older browsers.

Getting back the HTML content
It is possible to get back the HTML code between two tags with the html() method:

alert($('div#div_1').html());

This line will display an alert with the HTML content of the <div id="div_1"> tag.
Concerning the input and textarea tags, it is possible to recover their content in the
same way as with the val() method.

Setting HTML content in an element
Changing the content of a tag is very simple because we're using the same method
as the one we used for recovery. The main difference between the two is that we will
send a parameter to the method.

Thus, the following instruction will add a button in the div tag:

$('div#div_1').html($('div#div_1').html()+'<button>JQuery</button>');

Chapter 11

[121]

Looping elements
jQuery also allows us to loop all the elements that match a selector. To do this,
you must use the each() method as shown in the following example:

var cases = $('nav ul li').each(function() {
 $(this).addClass("nav_item");
});

Importing the jQuery library
To use jQuery, you must first import the library. There are two ways to add jQuery
to a web page. Each method has its own advantages, as outlined here:

•	 Download jQuery and import it from our web server. Using this method, we
keep control over the library and we are sure that the file will be reachable if
we have our own website too.

•	 Use the hosted libraries of the Google-hosted bookstores reachable from
any website. The advantage is that we avoid an HTTP request to our server,
which saves a bit of power.

In this chapter, we will host jQuery on our web server to not be dependent on a host.

We will import jQuery in all the pages of our application because we might need
multiple pages. In addition, the cache of the browser will keep jQuery for some time
so as not to download it too often. For this, we will download jQuery 1.11.0 and save
it on the TasksManager/static/javascript/lib/jquery-1.11.0.js file.

Then, you must add the following line in the head tag of the base.html file:

<script src="{% static 'javascript/lib/jquery-1.11.0.js' %}"></script>
{% block head %}{% endblock %}

With these changes, we can use jQuery in all the pages of our website, and we can
add lines in the head block from the template which extends base.html.

Using AJAX with Django

[122]

Working with AJAX in the task manager
In this section, we will modify the page that displays the list of tasks for deleting
the tasks to be carried out in AJAX. To do this, we will perform the following steps:

1.	 Add a Delete button on the task_list page.
2.	 Create a JavaScript file that will contain the AJAX code and the function

that will process the return value of the AJAX request.
3.	 Create a Django view that will delete the task.

We will add the Delete button by modifying the tasks_list.html template. To do
this, you must change the for task in task loop in tasks_list as follows:

{% for task in tasks_list %}
 <tr id="task_{{ task.id }}">
 <td>{{ task.title }}</
a></td>
 <td>{{ task.description|truncatechars:25 }}</td>
 <td>Edit</td>
 <td><button onclick="javascript:task_delete({{ task.id }}, '{% url
"task
_delete_ajax" %}');">Delete</button></td>
 </tr>
{% endfor %}

In the preceding code, we added an id property to the <tr> tag. This property will
be useful in the JavaScript code to delete the task line when the page will receive the
AJAX response. We also replaced the Delete link with a Delete button that executes
the JavaScript task_delete() function. The new button will call the task_delete()
function to execute the AJAX request. This function accepts two parameters:

•	 The identifier of the task
•	 The URL of the AJAX request

We will create this function in the static/javascript/task.js file by adding the
following code:

function task_delete(id, url){
 $.ajax({
 type: 'POST',
 // Here, we define the used method to send data to the Django
views. Other values are possible as POST, GET, and other HTTP request
methods.
 url: url,
 // This line is used to specify the URL that will process the
request.

Chapter 11

[123]

 data: {task: id},
 // The data property is used to define the data that will be sent
with the AJAX request.
 dataType:'json',
 // This line defines the type of data that we are expecting back
from the server. We do not necessarily need JSON in this example, but
when the response is more complete, we use this kind of data type.
 success: task_delete_confirm,
 // The success property allows us to define a function that will
be executed when the AJAX request works. This function receives as a
parameter the AJAX response.
 error: function () {alert('AJAX error.');}
 // The error property can define a function when the AJAX request
does not work. We defined in the previous code an anonymous function
that displays an AJAX error to the user.
 });
}
function task_delete_confirm(response) {
 task_id = JSON.parse(response);
 // This line is in the function that receives the AJAX response when
the request was successful. This line allows deserializing the JSON
response returned by Django views.
 if (task_id>0) {
 $('#task_'+task_id).remove();
 // This line will delete the <tr> tag containing the task we have
just removed
 }
 else {
 alert('Error');
 }
}

We must add the following lines after the title_html block in the tasks_list.
html template to import task.js in the template:

{% load static %}
{% block head %}
 <script src="{% static 'javascript/task.js' %}"></script>
{% endblock %}

We must add the following URL to the urls.py file:

 url(r'^task-delete-ajax$', 'TasksManager.views.ajax.task_delete_
ajax.page', name="task_delete_ajax"),

Using AJAX with Django

[124]

This URL will use the views contained in the view/ajax/task_delete_ajax.py file.
We must create the AJAX module with the __init__.py file and our
task_delete_ajax.py file with the following content:

from TasksManager.models import Task
from django.http import HttpResponse
from django import forms
from django.views.decorators.csrf import csrf_exempt
We import the csrf_exempt decorator that we will use to line 4.
import json
We import the json module we use to line 8.
class Form_task_delete(forms.Form):
We create a form with a task field that contains the identifier
of the task. When we create a form it allows us to use the Django
validators to check the contents of the data sent by AJAX. Indeed, we
are not immune that the user sends data to hack our server.
 task = forms.IntegerField()
@csrf_exempt
This line allows us to not verify the CSRF token for this view.
Indeed, with AJAX we cannot reliably use the CSRF protection.
def page(request):
 return_value="0"
 # We create a variable named return_value that will contain a code
returned to our JavaScript function. We initialize the value 0 to the
variable.
 if len(request.POST) > 0:
 form = Form_task_delete(request.POST)
 if form.is_valid():
 # This line allows us to verify the validity of the value sent by
the AJAX request.
 id_task = form.cleaned_data['task']
 task_record = Task.objects.get(id = id_task)
 task_record.delete()
 return_value=id_task
 # If the task been found, the return_value variable will contain
the value of the id property after removing the task. This value will
be returned to the JavaScript function and will be useful to remove
the corresponding row in the HTML table.
 # The following line contains two significant items. The json.
dumps() function will return a serialized JSON object. Serialization
allows encoding an object sequence of characters. This technique
allows different languages to share objects transparently. We also
define a content_type to specify the type of data returned by the
view.
 return HttpResponse(json.dumps(return_value), content_type =
"application/json")

Chapter 11

[125]

Summary
In this chapter, we learned how to use jQuery. We saw how to easily access the DOM
with this library. We also created an AJAX request on our TasksManager application
and we wrote the view to process this request.

In the next chapter, we will learn how to deploy a Django project based on the Nginx
and PostgreSQL server. We will see and discuss the installation step by step.

Production with Django
When the development phase of a website is complete and you want to make it
accessible to users, you must deploy it. The following are the steps to do this:

•	 Completing the development
•	 Selecting the physical server
•	 Selecting the server software
•	 Selecting the server database
•	 Installing PIP and Python 3
•	 Installing PostgreSQL
•	 Installing Nginx
•	 Installing virtualenv and creating a virtual environment
•	 Installing Django, South, Gunicorn, and psycopg2
•	 Configuring PostgreSQL
•	 Adaptation of Work_manager to the production
•	 Initial South migration
•	 Using Gunicorn
•	 Starting Nginx

Completing the development
It is important to carry out some tests before starting the deployment. Indeed,
when the website is deployed, problems are harder to solve; it can be a huge
waste of time for the developers and users. That's why I emphasize once again:
you must overdo tests!

Production with Django

[128]

Selecting the physical server
A physical server is the machine that will host your website. It is possible to host
your own website at home, but this is not suitable for professional websites. Indeed,
as many web users use the site, it is necessary to use a web host. There are so many
different types of accommodations, as follows:

•	 Simple hosting: This type of hosting is suitable for websites that need
quality service without having a lot of power. With this accommodation, you
do not have to deal with system administration, but it does not allow the
same flexibility as dedicated servers. This type of hosting also has another
disadvantage with Django websites: there are not many hosts offering a
compatible accommodation with Django yet.

•	 A dedicated server: This is the most flexible type of accommodation.
We rent (or buy) a server with a web host that provides us with an Internet
connection and other services. The prices are different depending on the
desired configuration, but powerful servers are very expensive. This type of
accommodation requires you to deal with system administration, unless you
subscribe to an outsourcing service. An outsourcing service allows you to use
a system administrator who will take care of the server against remuneration.

•	 A virtual server: Virtual servers are very similar to dedicated servers. They
are usually less expensive because some virtual servers can run on a single
physical server. Hosts regularly offer additional services such as server hot
backups or replication.

Choosing a type of accommodation should be based on your needs and financial
resources.

The following is a nonexhaustive list of hosts that offer Django:

•	 alwaysdata
•	 WebFaction
•	 DjangoEurope
•	 DjangoFoo Hosting

Selecting the server software
During the development phase, we used the server that comes with Django. This
server is very convenient during development, but it is not suitable for a production
website. Indeed, the development server is neither efficient nor secure. You have to
choose another type of server to install it. There are many web servers; we selected
two of them:

Chapter 12

[129]

•	 Apache HTTP Server: This has been the most-used web server since 1996,
according to Netcraft. It is a modular server that allows you to install
modules without the need to compile the server. In recent years, it's been
used less and less. According to Netcraft, in April 2013, the market share
was 51 percent.

•	 Nginx: Nginx is known for its performance and low memory consumption.
It is also modular, but the modules need to be integrated in the compilation.
In April 2013, Nginx was used by 14 percent of all the websites whose web
server Netcraft knows about.

Selecting the server database
The choice of server database is important. Indeed, this server will store all
the data of the website. The main characteristics that are sought after in a
database are performance, safeness, and reliability.

The choice depends on the importance of these three criteria:

•	 Oracle: This database is a system database developed by Oracle Corporation.
There is a free open source version of this database, but its features are
limited. This is not a free-of-charge database.

•	 MySQL: This is a database system that belongs to Oracle (since the purchase
of Sun Microsystems). It is a widely used database on the Web, including the
LAMP (Linux Apache MySQL PHP) platform. It is distributed under a dual
GPL and a proprietary license.

•	 PostgreSQL: This is a system of free databases distributed under the BSD
license. This system is known to be stable and offers advanced features
(such as the creation of data types).

•	 SQLite: This is the system that we used during the development of our
website. It is not suitable for a website that gets a lot of visitors. Indeed,
the entire database is in a SQLite file and does not allow a competitor to
access the data. Furthermore, there is no user or system without a security
mechanism. However, it is quite possible to use it to demonstrate to a client.

•	 MongoDB: This is a document-oriented database. This database system
is classified as a NoSQL database because it uses a storage architecture
that uses the BSON (binary JSON) format. This system is popular in
environments where the database is distributed among several servers.

Production with Django

[130]

Deploying the Django website
For the rest of the book, we will use the HTTP Nginx server and PostgreSQL
database. The chapter's explanation will be made on a GNU / Linux Debian
7.3.0 32-bit system. We will start with a new Debian operating system without
any installations.

Installing PIP and Python 3
For the following commands, you must log on with a user account that has the same
privileges as a superuser account. For this purpose, run the following command:

su

After this command, you must type the root password.

First, we update the Debian repositories:

apt-get update

Then, we install Python 3 and PIP as done in Chapter 2, Creating a Django Project:

apt-get install python3

apt-get install python3-pip

alias pip=pip-3.2

Installing PostgreSQL
We will install four packages to be able to use PostgreSQL:

apt-get install libpq-dev python-dev postgresql postgresql-contrib

Then, we will install our web Nginx server:

apt-get install nginx

Chapter 12

[131]

Installing virtualenv and creating a virtual
environment
We have installed Python and PIP as done in Chapter 2, Creating a Django Project,
but before installing Django, we will install virtualenv. This tool is used to create
virtual environments for Python and to have different library versions on the same
operating system. Indeed, on many Linux systems with Debian, a version of Python
2 is already installed. It is recommended that you do not uninstall it to keep the
system stable. We will install virtualenv to set our own environments and facilitate
our future Django migration:

pip install virtualenv

You must then create a folder that will host your virtual environments:

mkdir /home/env

The following command creates a virtual environment named django1.6 in the /
home/env/ folder:

virtualenv /home/env/django1.6

We will then provide all the rights to all the users to access the folder of the
environment by issuing the following command. From the point of view of safety,
it would be better to restrict access by user or group, but this will take a lot of time:

cd /home/

chmod -R 777 env/

exit

Installing Django, South, Gunicorn,
and psycopg2
We will install Django and all the components that are needed for Nginx and
Django to be able to communicate. We will first activate our virtual environment.
The following command will connect us to the virtual environment. As a result, all
Python commands made from this environment can only use packages installed in
this environment. In our case, we will install four libraries that are only installed in
our virtual environment. For the following commands, you must log in as a user
who does not have the superuser privileges. We cannot perform the following
commands from the root account because we need virtualenv. However, the root
account sometimes overrides the virtual environment to use Python from the system,
instead of the one present in the virtual environment.

Production with Django

[132]

source /home/env/django1.6/bin/activate

pip install django=="1.6"

pip install South

Gunicorn is a Python package that plays the role of a WSGI interface between Python
and Nginx. To install it, issue the following command:

pip install gunicorn

psycopg2 is a library that allows Python and PostgreSQL to communicate with each
other:

pip install psycopg2

To reconnect as a superuser, we have to disconnect from the virtual environment:

deactivate

Configuring PostgreSQL
For the following commands, you must log on with a user account that has the same
privileges as a superuser. We will connect to the PostgreSQL server:

su

su - postgres

The following command creates a database called workmanager:

createdb workmanager

We will then create a user for PostgreSQL. After entering the following command,
more information is requested:

createuser -P

The following lines are the information requested by PostgreSQL for the new user
and the responses (used for this chapter):

Role name : workmanager

Password : workmanager

Password confirmation : workmanager

Super user : n

Create DB : n

Create new roles : n

Chapter 12

[133]

Then, we must connect to the PostgreSQL interpreter:

psql

We give all the rights to our new user on the new database:

GRANT ALL PRIVILEGES ON DATABASE workmanager TO workmanager;

Then, we quit the SQL interpreter and the connection to PostgreSQL:

\q

exit

Adaptation of Work_manager to production
For the following commands, you must log in as a user who does not have the
superuser privileges.

At this stage of deployment, we have to copy the folder that contains our Django
project. The folder to be copied is the Work_manager folder (which contains the
Work_manager and TasksManager folders and the manage.py file). We will copy it to
the root of the virtual environment, that is, in /home/env/django1.6.

To copy it, you can use the means you have at your disposal: a USB key, SFTP, FTP,
and so on. We then need to edit the settings.py file of the project to adapt it to the
deployment.

The part that defines the database connection becomes the following:

DATABASES = {
 'default': {
 'ENGINE': 'django.db.backends.postgresql_psycopg2',
 'NAME': 'workmanager',
 'USER': 'workmanager',
 'PASSWORD': 'workmanager',
 'HOST': '127.0.0.1',
 'PORT': '',
 }
}

We must modify the ALLOWED_HOSTS line with the following:

ALLOWED_HOSTS = ['*']

Production with Django

[134]

Also, it is important to not use the DEBUG mode. Indeed, the DEBUG mode can provide
valuable data to hackers. For this, we must change the DEBUG and TEMPLATE_DEBUG
variables in the following way:

DEBUG = False
TEMPLATE_DEBUG = False

Initial South migration
We activate our virtual environment to perform the migration and launch Gunicorn:

cd /home/env/django1.6/Work_manager/

source /home/env/django1.6/bin/activate

python3.2 manage.py schemamigration TasksManager --initial

python3.2 manage.py syncdb -–migrate

Sometimes, the creation of the database with PostgreSQL generates an error when
everything goes well. To see if the creation of the database went well, we must
run the following commands as the root user and verify that the tables have been
created:

su

su - postgres

psql -d workmanager

\dt

\q

exit

If they were properly created, you have to make a fake South migration to manually
tell it that everything went well:

python3.2 manage.py migrate TasksManager --fake

Using Gunicorn
We then start our WSGI interface for Nginx to communicate with:

gunicorn Work_manager.wsgi

Chapter 12

[135]

Starting Nginx
Another command prompt as the root user must run Nginx with the following
command:

su

service nginx start

Now, our web server is functional and is ready to work with many users.

Summary
In this chapter, we learned how to deploy a Django website with a modern
architecture. In addition, we used virtualenv, which allows you to use several
versions of Python libraries on the same system.

In this book, we learned what the MVC pattern is. We have installed Python and
Django for our development environment. We learned how to create templates,
views, and models. We also used the system for routing Django URLs. We also
learned how to use some specific elements such as Django forms, CBV, or the
authentication module. Then, we used session variables and AJAX requests.
Finally, we learned how to deploy a Django website on a Linux server.

Cheatsheet
When a developer has learned how to use a technology, it is often necessary to
search for new information or syntax. He/she can waste a lot of time doing this. The
purpose of this appendix is to provide a quick reference for Django developers.

The field types in models
The following sections cover a nonexhaustive list of the field types in models.

The model fields are those that will be saved in the database. Depending on the
database system selected, the type field may be different depending on the database
used.

The types are specified with their options in the following manner:

Type (option1 = example_data, option2 = example_data) [information]

The numerical field type
Fields presented in this section are numeric fields such as integers and decimals:

•	 SmallIntegerField(): This defines a small integer field; for some databases,
the lower value is 256

•	 IntegerField(): This defines an integer field
•	 BigIntegerField(): Accuracy is 64 bits, from -9223372036854775808 to

9223372036854775807
•	 DecimalField (max_digits = 8, decimal_places = 2)

Cheatsheet

[138]

The descriptions of the options are as follows:

•	 max_digits: This sets the number of digits that make up the whole number
•	 decimal_places: This sets the number of digits that compose the decimal

part of the number

The string field type
This section contains the types of fields that contain strings:

•	 CharField (max_length = 250)

•	 TextField (max_length = 250): This field has the distinction of being
presented as a <textarea> tag in the Django forms

•	 EmailField (max_length = 250): This field is CharField that contains an
e-mail validator for Django forms

The description of the option is as follows:

•	 max_length: This sets the maximum number of characters that compose
the string

The temporal field type
This section contains the types of fields that contain temporal data:

•	 DateField (auto_now = false, auto_now_add = true)
•	 DateTimeField (auto_now = false, auto_now_add = true)
•	 TimeField (auto_now = false, auto_now_add = true)

The descriptions of the options are as follows:

•	 auto_now: This automatically sets the field to the current time each time
a record is saved

•	 auto_now_add: This automatically sets the field to the current time when an
object is created

Appendix

[139]

Other types of fields
This section contains the types of fields that do not belong to the previous categories:

•	 BooleanField()

•	 FileField: (upload_to = "path", max_length="250"): This field is
used to store files on the server

•	 ImageField(upload_to = "path", max_length="250", height_field
=height_img, width_field= width_img): This field corresponds to
FileField but imparts special treatment to images such as storing the
image's height and width

The descriptions of the options are as follows:

•	 Upload_to: This defines the folder that will store the files corresponding to
this field.

•	 max_length: The FileField and ImageField fields are actually text fields
that store the path and name of the uploaded file.

•	 height_field and width_field: These take an integer field of the model as
an argument. This field is used to store the size of the image.

Relationship between models
This section contains the types of fields that define the relationships between models:

•	 ForeignKey (model, related_name = "foreign_key_for_dev", to_
field="field_name", limit_choices_to=dict_or_Q, on_delete=)

•	 OneToOneField (model, related_name = "foreign_key_for_dev", to_
field="field_name", limit_choices_to=dict_or_Q, on_delete=)

•	 ManyToManyField (model, related_name = "foreign_key_for_dev",
to_field="field_name", limit_choices_to=dict_or_Q, on_delete=)

The descriptions of the options are as follows:

•	 model: Here, you must specify the name of the model class you want to use.
•	 related_name: This allows you to name the relationship. It is essential when

multiple relationships to the same model exist.
•	 to_field: This defines a relationship to a specific field of the model. By

default, Django creates a relationship to the primary key.
•	 on_delete: The database action on the removal of a field can be CASCADE,

PROTECT, SET_NULL, SET_DEFAULT, and DO_NOTHING.
•	 limit_choices_to: This defines the queryset that restricts records for

the relationship.

Cheatsheet

[140]

The model meta attributes
The model meta attributes are to be defined in a meta class in the model in the
following way:

class Product(models.Model):
 name = models.CharField()
 class Meta:
 verbose_name = "product"

The following attributes are used to define information about the model in which
they are placed:

•	 db_tables: This sets the name of the table stored in the database
•	 verbose_name: This sets the name of a record for the user
•	 verbose_name_plural: This sets the name of several records for the user
•	 ordering: This sets a default order when listing records

Options common to all fields of models
The following options are common to all the fields of a model:

•	 default: This sets a default value for the field.
•	 null: This enables the null value for the field and makes an optional

relationship if this option is defined on a relationship field.
•	 blank: This enables you to leave the field empty.
•	 error_messages: This specifies a series of error messages.
•	 help_text: This sets a help message.
•	 unique: This defines a field that does not contain duplicates.
•	 verbose_name: This defines a field name that is readable by a human.

Do not put a capital letter first; Django will do it automatically.
•	 choices: This defines the number of possible choices for the field.
•	 db_column: This sets the name of the field created in the database.

Appendix

[141]

The form fields
It is possible to use all types of field models in the forms. Indeed, some types of model
fields have been created for a particular use in forms. For example, the TextField
model field has nothing different from CharField except the fact that by default, in
the form, the TextField field displays a <textarea> tag and a <input type="text">
name. So, you can write a form field as follows:

field1 = forms.TextField()

Common options for the form fields
The following options are common to all the form fields:

•	 error_messages: This specifies a series of error messages
•	 help_text: This sets a help message
•	 required: This defines a field that must be filled
•	 initial: This sets the default value for the field
•	 validators: This defines a particular validator that validates the field value
•	 widget: This defines a specific widget for the field

The widget form
Widgets allow you to define HTML code that renders form fields. We'll explain what
widgets can generate as HTML code, as follows:

•	 TextInput: This corresponds to <input type="text" />
•	 Textarea: This corresponds to <textarea></textarea>
•	 PasswordInput: This corresponds to <input type="password" />
•	 RadioSelect: This corresponds to <input type="radio" />
•	 Select: This corresponds to <select><option></option></select>
•	 CheckboxInput: This corresponds to <input type="checkbox" />
•	 FileInput: This corresponds to <input type="file" />
•	 HiddenInput: This corresponds to <input type="hidden" />

Cheatsheet

[142]

Error messages (forms and models)
The following is a partial list of the error messages that can be set when form fields
are entered incorrectly:

•	 required: This message is displayed when the user does not fill data in
the field

•	 min_length: This message is displayed when the user has not supplied
enough data

•	 max_length: This message is displayed when the user has exceeded the size
limit of a field

•	 min_value: This message is displayed when the value entered by the user is
too low

•	 max_value: This message is displayed when the value entered by the user is
too high

The template language
When a developer develops templates, he/she regularly needs to use the template
language and filters.

Template tags
The following are the key elements of the template language:

•	 {% autoescape on OR off %} {% endautoescape %}: This automatically
starts the auto-escape feature that helps protect the browser of the displayed
data (XSS).

•	 {% block block_name %} {% endblock %}: This sets the blocks that can be
filled by templates that inherit from them.

•	 {% comment %} {% endcomment %}: This sets a comment that will not be
sent to the user as HTML.

•	 {% extends template_name %}: This overrides a template.
•	 {% spaceless %}: This removes all the whitespaces between the HTML tags.
•	 {% include template_name %}: This includes a template named

template_name in the current template. The blocks included templates that
cannot be redefined.

Appendix

[143]

Loops in dictionaries
This section shows you how to loop through a dictionary. The steps involved in
looping are as follows:

•	 {% for var in list_var %}: This allows looping in the list_var dictionary
•	 {% empty %}: This displays the subsequent code if the dictionary is empty
•	 {% endfor %}: This indicates the end of a loop

Conditional statements
This section shows how to execute a conditional statement:

•	 {% if cond %}: This line checks the condition and discusses the following
code when enabled.

•	 {% elif cond %}: This line checks another condition if the first has not been
verified. If this condition is satisfied, the following code will be processed.

•	 {% else %}: This line will process the following code if none of the previous
conditions have been validated.

•	 {% endif %}: This line ends the processing of conditions.

The template filters
The following are the different template filters:

•	 addslashes: This adds slashes before quotes
•	 capfirst: This capitalizes the first character
•	 lower: This converts the text into lowercase
•	 upper: This converts the text into uppercase
•	 title: This capitalizes all the first characters of each word
•	 cut: This removes all the values of the argument from the given string, for

example, {{ value|cut:"*" }} removes all the * characters
•	 linebreaks: This replaces line breaks in text with the appropriate HTML

tags
•	 date: This displays a formatted date, for example, {{ value|date:"D d M

Y" }} will display Wed 09 Jan 2008
•	 pluralize: This allows you to display plurals, shown as follows:

You have {{ nb_products }} product{{ nb_products|pluralize }} in
our cart.
I received {{ nb_diaries }} diar{{ nb_diaries|pluralize:"y,ies"
}}.

Cheatsheet

[144]

•	 random: This returns a random element from the list
•	 linenumbers: This displays text with line numbers at the left-hand side
•	 first: This displays the first item in the list
•	 last: This displays the last item in the list
•	 safe: This sets a non-escape value
•	 escape: This escapes an HTML string
•	 escapejs: This escapes characters to use in JavaScript strings
•	 default: This defines a default value if the original value equals None or

empty; for example, with {{ value|default:"nothing" }}, if the value is
"", it will display nothing.

•	 dictsort: This sorts the dictionary in the ascending order of the key; for
example, {{ value|dictsort:"price"}} will sort the dictionary by price

•	 dictsortreversed: This is used to sort the dictionary in the descending
order of the key

•	 floatformat: This formats a float value, and the following are the examples:

°° When 45.332 is the value,{{ value|floatformat:2 }}
displays 45.33

°° When 45.00 is the value,{{ value|floatformat:"-2" }}
displays 45

The queryset methods
The following are the queryset methods:

•	 all(): This method retrieves all the records of a model.
•	 filter(condition): This method allows you to filter a queryset.
•	 none(): This method can return an empty queryset. This method is useful

when you want to empty a queryset.
•	 dinstinct(field_name): This method is used to retrieve the unique values

of a field.
•	 values_list(field_name): This method is used to retrieve the data

dictionary of a field.
•	 get(condition): This method is used to retrieve a record from a model.

When using this method, you must be sure that it concerns only one record.
•	 exclude(condition): This method allows you to exclude some records.

Appendix

[145]

The following elements are the aggregation methods:

•	 Count(): This counts the number of records returned
•	 Sum(): This adds the values in a field
•	 Max(): This retrieves the maximum value of a field
•	 Min(): This retrieves the minimum value of a field
•	 Avg(): This uses an average value of a field

Index
Symbols
__gte field lookup 68
__gt field lookup 68
__lte field lookup 68
__lt field lookup 68
<table> tag 8

A
access

restricting, in views 117, 118
restricting, to connected members 117
restricting, to URLs 118

accommodations, physical server
dedicated server 128
simple hosting 128
virtual server 128

addslashes, template filters 143
admin module

about 53, 54
advantages 54
installing 54
using 55

aggregation methods
Avg() method 145
Count() method 145
Max() method 145
Min() method 145
Sum() method 145

AJAX
about 8, 119
using, in task manager 122-124

all() method 144
any character regular expression 26
Apache HTTP Server 129

application
configuring 20, 21
creating 19
testing 31

as_p method 78
as_table method 78
as_ul method 78
Asynchronous JavaScript

and XML. See AJAX
authentication module

advantages 109
Django application, configuring 110
UserProfile model, editing 110, 111
using 109

auto_now_add option 138
auto_now option 138
Avg() method 145

B
BigIntegerField() method 137
blank option 140
BSON (binary JSON) format 129

C
capfirst filter 38
capfirst, template filters 143
CBV

about 85
creating 97, 98
disadvantage 85

character classes
using 26

characters
validating, with regular expressions 27

[148]

CharField field type 49
choices option 140
Class-based views. See CBV
conditional statement

executing 143
connection.py view

creating 114
Count() method 145
CreateView.as_view feature 87
CreateView CBV

minimalist usage example 86, 87
using 86

CRUD 85
CSRF attack (Cross-Site Request Forgery)

about 75
execution steps 75

CSRF protection 75, 76
csrftoken cookie 102
CSS selectors 120
cut, template filters 143

D
data

obtaining, from database 60
database

data, obtaining from 60
records, updating 65

DateField field type 49
date, template filters 143
DateTimeField field type 49
db_column option 140
db_tables attribute 140
DEBUG parameter 20
DecimalField field type 49
decimal_places option 138
dedicated server 128
DEFAULT_CHARSET parameter 20
default option 140
default, template filters 144
DeleteView CBV

using 96
DetailView CBV

extending 92, 93
minimalist usage example 92
using 91

developer

adding, with Django forms 75
adding, without Django forms 72

dictsortreversed, template filters 144
dictsort, template filters 144
dinstinct(field_name) method 144
Django

about 9, 46
dynamic templates, creating 35
host list 128
installing, for Linux 17
installing, for Mac OS 18
installing, for Windows 17
project, starting with 18, 19
routing 23, 24
sessions, using 102
templates 33
using 11

Django application
configuring 110

Django forms
about 71
advantages 71
CSRF protection 75, 76
developer, adding with 75
developer, adding without 72
error messages, displaying 82
initial data, setting 84
template, creating with HTML form 72, 73
template, writing with 78, 79
using 80
validation form, extending 81
view, creating 73-75
view, writing with 76-78
widgets, using 82, 83

Django website deployment
PIP, installing 130
PostgreSQL, installing 130
Python 3, installing 130
virtualenv, installing 131
virtual environment, creating 131

DOM (Document Object Model) 119
Don't Repeat Yourself (DRY) 11
DRY URLs

creating 40-42
dynamic templates

creating 35

[149]

E
ENGINE property 46
error messages

displaying 82
max_length message 142
max_value message 142
min_length message 142
min_value message 142
required message 142

error_messages option 140, 141
escapejs, template filters 144
escape, template filters 144
exclude(condition) method 144
exclude property 80
exclude query

using 69

F
field lookups

__gte lookup 68
__gt lookup 68
__lte lookup 68
__lt lookup 68

fields property 80
field types

CharField 49
DateField 49
DateTimeField 49
DecimalField 49
IntegerField 49
TextField 49

field types, models
model meta attributes 140
numerical field type 137
relationships, between models 139
string field type 138
temporal field type 138

filter(condition) method 144
filters

capfirst filter 38
linebreaks filter 40
lower filter 37
pluralize filter 38
truncatechars filter 40
upper filter 37
XSS filter 39

Firebug
about 101
csrftoken cookie 102
sessionid cookie 102

first, template filters 144
floatformat, template filters 144
foreign key

saving 64, 65
form-based model

about 79
supervisor creation form 79, 80

form fields
error_messages option 141
help_text option 141
initial option 141
required option 141
validators option 141
widget option 141

framework 9

G
generic template

creating 97, 98
get(condition) method 144
get parameter

using 63, 64
Gunicorn

installing 132
using 134

H
height_field option 139
Hello world!

displaying, in template 33, 34
help_text option 140, 141
HTML content

obtaining 120
setting, in element 120

HTML form
template, creating 72, 73

HttpResponse() function 30

[150]

I
initial data

setting, during field definition 84
setting, during form instantiation 84

initial option 141
installations

Gunicorn 132
PIP 130
PostgreSQL 130
psycopg2 132
Python 3 130
virtualenv 131

IntegerField field type 49
IntegerField() method 137

J
Java Server Page (JSP) 8
jQuery

advantages 119, 120
CSS selectors 120
elements, looping 121
HTML content, obtaining 120
HTML content, setting in element 120
library, importing 121
working with 119, 120

jQuery library
importing 121

L
LAMP (Linux Apache MySQL PHP)

platform 129
LANGUAGE_CODE parameter 20
last, template filters 144
limit_choices_to option 139
linebreaks filter 40
linebreaks, template filters 143
linenumbers, template filters 144
Linux

Django, installing for 17
PIP, installing for 16
Python 3, installing for 14
setuptools, installing for 15

ListView
extending 89-91
minimalist usage example 88

working with 88
login page

creating 114-116
login_required 117
logout() function 116
logout page

creating 114-116
lower filter 37
lower, template filters 143

M
Mac OS

Django, installing for 18
PIP, installing for 17
Python 3, installing for 15
setuptools, installing for 15

manage.py runserver command file 28
many-to-many relationship 50
max_digits option 138
max_length message 142
max_length option 139
Max() method 145
max_value message 142
MIDDLEWARE_CLASSES parameter 20
migration systems

URL 46
minimalist usage example,

CreateView CBV 86, 87
minimalist usage example,

DetailView CBV 92
minimalist usage example, ListView 88
minimalist usage example, UpdateView

CBV 94
min_length message 142
Min() method 145
min_value message 142
model instance

obtaining, from queryset instance 63
updating 65

model meta attributes 140
model option 139
models

about 87
blank option 140
choices option 140
creating 48

[151]

db_column option 140
default option 140
error_messages option 140
extending 52, 53
help_text option 140
multiple records, obtaining from 60-62
null option 140
Project model 50
relationship between 50
saving 60
unique option 140
UserProfile model 48, 49
two relationships, using 56
verbose_name option 140

MongoDB 129
multiple records

obtaining, from model 60-62
updating 66

MVC framework 9-11
MySQL 129

N
name property 97
NAME property 46
Nginx

about 129
running 135

none() method 144
null option 140
numerical field type 137

O
object-relational mapping (ORM) 45
on_delete option 139
OneToOneField relationship 110
one-to-one relationship 50
Oracle 129
ordering attribute 140
OR operator

used, in queryset 68

P
page() method 30
physical server

about 128
accommodations 128

PIP
about 16
installing 130
installing, for Linux 16
installing, for Mac OS 17
installing, for Windows 16

pluralize filter 38
pluralize, template filters 143
POST data reception

used, for creating view 73-75
PostgreSQL

about 129
configuring 132, 133
installing 130

project
starting, with Django 18, 19

Project model
creating 50

psycopg2 132
PyPI website

URL 15
Python 3

installing 130
installing, for Linux 14
installing, for Mac OS 15
installing, for Windows 14

Python executable
URL 14

Q
queryset

about 59
greater lookup, using 68
lower lookup, using 68
OR operator, using 68

queryset instance
model instance, obtaining from 63

queryset methods
all() method 144
dinstinct(field_name) method 144
exclude(condition) method 144

[152]

filter(condition) method 144
get(condition) method 144
none() method 144
values_list(field_name) method 144

R
random, template filters 144
record

deleting 66
updating, in database 65

Regexper 25
regular expressions

about 25
any character regular expression 26
character classes 26
characters, validating 27
uninterpreted characters 25
used, for validating strings 25, 26

related_name option 139
related objects

recovering 67
relationships

task model, creating with 50, 51
relationship types

many-to-many relationship 50
one-to-one relationship 50

required message 142
required option 141
routing 23, 24
runserver command 31

S
safe, template filters 144
server database

characteristics 129
selecting, criteria 129

server software
Apache HTTP Server 129
Nginx 129
selecting 128

session fixation 106
sessionid cookie 102
sessions

about 101
life cycle 102
using 102

using, in Django 102
session security 106
session variables

creating 103
example 103-106
obtaining 103

settings.py file 19
setuptools

installing, for Linux 15
installing, for Mac OS 15
installing, for Windows 15

simple hosting 128
single record

retrieving 62, 63
SmallIntegerField() method 137
South

about 46
installing 47
resetting 111

South extension
using 47

South migration
performing 134

SQLite 129
startproject command 19
static files

using, in templates 43, 44
string field type 138
strings

validating, regular expressions used 25, 26
str method

defining 56
success_url feature 87
Sum() method 145
supervisor

creating 65
supervisor creation form 79, 80

T
task_delete() function 122
task manager

AJAX, using 122-124
task model

creating, with relationships 50, 51
template

conditional statements 36

[153]

creating, with HTML form 72, 73
data, injecting from view 35
extending 42, 43
filters, using 37
Hello world! 33, 34
looping 36, 37
static files, using 43, 44
variables, integrating 36
writing, with Django form 78, 79

template filters
addslashes 143
capfirst 143
cut 143
date 143
default 144
dictsort 144
dictsortreversed 144
escape 144
escapejs 144
first 144
floatformat 144
last 144
linebreaks 143
linenumbers 144
lower 143
pluralize 143
random 144
safe 144
title 143
upper 143

template language
key elements 142

template_name feature 87
templates language

queryset methods 144
template filters 143, 144
template tags 142

template tags
conditional statement, executing 143
dictionary, looping through 143

temporal field type 138
TextField field type 49
TIME_ZONE parameter 20
title, template filters 143
to_field option 139
truncatechars filter 40

U
Uniform Resource Locator (URL) 8
uninterpreted characters 25
unique option 140
update() method 66
UpdateView CBV

extending 94, 95
minimalist usage example 94
using 94

Upload_to option 139
upper filter 37
upper, template filters 143
URL

access, restricting to 118
creating 28, 29

urls.py file 19, 24
user

adding 111, 113
user.is_authenticated attribute 116
UserProfile model

creating 48, 49
editing 110, 111

V
validation form

extending 81
validators option 141
values_list(field_name) method 144
verbose_name attribute 140
verbose_name option 140
verbose_name_plural attribute 140
view

access, restricting to 117, 118
creating 30
creating, POST data reception used 73-75
writing, with Django form 76, 78

virtualenv
installing 131

virtual environment
creating 131

virtual server 128

[154]

W
Web 1.0 7, 8
Web 2.0 8
web application 119
widget form 141
widget option 141
widgets

using 82, 83
width_field option 139
Windows

Django, installing for 17
PIP, installing for 16
Python 3, installing for 14
setuptools, installing for 15

Work_manager folder
copying 133

X
XSS attack 39
XSS filter 39

uploaded by [stormrg]

Thank you for buying
Getting Started with Django

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around Open Source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each Open Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like
to discuss it first before writing a formal book proposal, contact us; one of our commissioning
editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Instant Django 1.5 Application
Development Starter
ISBN: 978-1-78216-356-5 Paperback: 78 pages

Jump into Django with this hands-on guide to
practical web application development with Python.

1. Learn something new in an Instant! A short, fast,
focused guide delivering immediate results.

2. Work with the database API to create a
data-driven app.

3. Learn Django by creating a practical
web application.

Django JavaScript Integration:
AJAX and jQuery
ISBN: 978-1-84951-034-9 Paperback: 324 pages

Develop AJAX application using Django and jQuery

1. Learn how Django + jQuery = AJAX.

2. Integrate your AJAX application with Django
on the server side and jQuery on the client side.

3. Learn how to handle AJAX requests
with jQuery.

Please check www.PacktPub.com for information on our titles

Python 3 Object Oriented
Programming
ISBN: 978-1-84951-126-1 Paperback: 404 pages

Harness the power of Python 3 objects

1. Learn how to do Object Oriented Programming
in Python using this step-by-step tutorial.

2. Design public interfaces using abstraction,
encapsulation, and information hiding.

3. Turn your designs into working software by
studying the Python syntax.

Mastering Python Regular
Expressions
ISBN: 978-1-78328-315-6 Paperback: 110 pages

Leverage regular expressions in Python even for the
most complex features

1. Explore the workings of Regular Expressions
in Python.

2. Learn all about optimizing regular expressions
using RegexBuddy.

3. Full of practical and step-by-step examples,
tips for performance, and solutions for
performance-related problems faced by users
all over the world.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Django's Position on the Web
	From Web 1.0 to Web 2.0
	Web 1.0
	Web 2.0

	What is Django?
	Django – a web framework

	The MVC framework
	Why use Django?
	Summary

	Chapter 2: Creating a Django Project
	Installing Python 3
	Installing Python 3 for Windows
	Installing Python 3 for Linux
	Installing Python 3 for Mac OS

	Installing setuptools
	Installing setuptools for Windows
	Installing setuptools for Linux
	Installing setuptools for Mac OS

	Installing PIP
	Installing PIP for Windows
	Installing PIP for Linux
	Installing PIP for Mac OS

	Installing Django
	Installing Django for Windows
	Installing Django for Linux
	Installing Django for Mac OS

	Starting your project with Django
	Creating an application
	Configuring the application
	Summary

	Chapter 3: Hello World! with Django
	Routing in Django
	Regular expressions
	The uninterpreted characters
	The beginning and the end of the line
	The any character regular expression
	The character classes
	Validating the number of characters

	Creating our first URL
	Creating our first view
	Testing our application
	Summary

	Chapter 4: Working with Templates
	Displaying Hello world! in a template
	Injecting the data from the view to the template
	Creating dynamic templates
	Integrating variables in templates
	Conditional statements
	Looping in a template

	Using filters
	The upper and lower filters
	The lower filter
	The upper filter

	The capfirst filter
	The pluralize filter
	The escape and safe to avoid XSS filters
	The linebreaks filter
	The truncatechars filter

	Creating DRY URLs
	Extending the templates
	Using static files in templates
	Summary

	Chapter 5: Working with Models
	Databases and Django
	Migrations with South
	Installing South
	Using the South extension

	Creating simple models
	The UserProfile model
	The Project model

	The relationship between the models
	Creating the task model with relationships

	Extending models
	The admin module
	Installing the module
	Using the module

	Advanced usage of models
	Using two relationships for the same model
	Defining the str method

	Summary

	Chapter 6: Getting a Model's Data
with Querysets
	The persisting model's data on the database
	Filling a model and saving it in the database

	Getting data from the database
	Getting multiple records
	Getting only one record
	Getting a model instance from the queryset instance

	Using the get parameter
	Saving the foreign key
	Updating records in the database
	Updating a model instance
	Updating multiple records

	Deleting a record
	Getting linked records
	Advanced usage of the queryset
	Using an OR operator in a queryset
	Using the lower and greater than lookups
	Performing an exclude query
	Making a raw SQL query

	Summary

	Chapter 7: Working with Django Forms
	Adding a developer without using Django forms
	Template of an HTML form
	The view using the POST data reception

	Adding a developer with Django forms
	CSRF protection
	The view with a Django form
	Template of a Django form

	The form based on a model
	The supervisor creation form

	Advanced usage of Django forms
	Extending the validation form
	Customizing the display of errors
	Using widgets
	Setting initial data in a form
	When instantiating the form
	When defining fields

	Summary

	Chapter 8: Raising Your Productivity
with CBV
	The CreateView CBV
	An example of minimalist usage

	Working with ListView
	An example of minimalist usage
	Extending ListView

	The DetailView CBV
	An example of minimalist usage
	Extending DetailView

	The UpdateView CBV
	An example of minimalist usage
	Extending the UpdateView CBV

	The DeleteView CBV
	Going further by extending the CBV
	Using a custom class CBV update

	Summary

	Chapter 9: Using Sessions
	Creating and getting session variables
	An example – showing the last task consulted

	About session security
	Summary

	Chapter 10: The Authentication Module
	How to use the authentication module
	Configuring the Django application
	Editing the UserProfile model

	Adding a user
	Login and logout pages
	Restricting access to the connected members
	Restricting access in views
	Restricting access to URLs

	Summary

	Chapter 11: Using AJAX with Django
	Working with jQuery
	jQuery basics
	CSS selectors in jQuery
	Getting back the HTML content
	Setting HTML content in an element
	Looping elements
	Importing the jQuery library

	Working with AJAX in the task manager
	Summary

	Chapter 12: Production with Django
	Completing the development
	Selecting the physical server
	Selecting the server software
	Selecting the server database
	Deploying the Django website
	Installing PIP and Python 3
	Installing PostgreSQL
	Installing virtualenv and creating a virtual environment

	Installing Django, South, Gunicorn,
and psycopg2
	Configuring PostgreSQL
	Adaptation of Work_manager to the production
	Initial South migration
	Using Gunicorn
	Starting Nginx

	Summary

	Appendix: Cheatsheet
	The field types in models
	The numerical field type
	The string field type
	The temporal field type
	Other types of fields
	Relationship between models
	The model meta attributes
	Options common to all fields of models

	The form fields
	Common options of the form fields
	The widget form
	Error messages (forms and models)

	The template language
	Template tags
	Loops in dictionaries
	Conditional statements

	The template filters
	The queryset methods

	Index
	Uploaded by [StormRG]

