




FOURTH EDITION

Python
Pocket Reference

Mark Lutz

Beijing • Cambridge • Farnham • Köln • Sebastopol • Tokyo



Python Pocket Reference, Fourth Edition
by Mark Lutz

Copyright © 2010 Mark Lutz. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North,
Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promo-
tional use. Online editions are also available for most titles (http://my.safari
booksonline.com). For more information, contact our corporate/institutional
sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Julie Steele
Production Editor: Sumita Mukherji
Proofreader: Kiel Van Horn
Indexer: John Bickelhaupt
Cover Designer: Karen Montgomery
Interior Designer: David Futato

October 1998: First Edition. 
January 2002: Second Edition. 
February 2005: Third Edition. 
October 2009: Fourth Edition. 

Revision History for the Fourth Edition:
2010-07-19 Third release
2010-12-03 Fourth release
2011-04-01 Fifth release
2011-06-24 Sixth release
2012-03-09 Seventh release

See http://oreilly.com/catalog/errata.csp?isbn=9780596158088 for release de-
tails.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are
registered trademarks of O’Reilly Media, Inc. The Pocket Reference series
designations, Python Pocket Reference, the image of a rock python, and re-
lated trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish
their products are claimed as trademarks. Where those designations appear
in this book, and O’Reilly Media, Inc., was aware of a trademark claim, the
designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the
publisher and author assume no responsibility for errors or omissions, or for
damages resulting from the use of the information contained herein.
ISBN: 978-0-596-15808-8

[M]

1331243247

http://my.safaribooksonline.com/?portal=oreilly
http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9780596158088


Contents

Python Pocket Reference 1
Introduction 1
Conventions 2
Command-Line Options 4

Python Options 4
Program Specification 6

Environment Variables 7
Operational Variables 7
Command-Line Option Variables 8

Built-in Types and Operators 8
Operators and Precedence 8
Operator Usage Notes 10
Operations by Category 11
Sequence Operation Notes 15

Specific Built-in Types 16
Numbers 16
Strings 19
Unicode Strings 33
Lists 36
Dictionaries 41
Tuples 44
Files 45

iii



Sets 49
Other Common Types 51
Type Conversions 52

Statements and Syntax 53
Syntax Rules 53
Name Rules 54

Specific Statements 56
The Assignment Statement 57
The Expression Statement 59
The print Statement 60
The if Statement 62
The while Statement 62
The for Statement 63
The pass Statement 63
The break Statement 63
The continue Statement 64
The del Statement 64
The def Statement 64
The return Statement 68
The yield Statement 68
The global Statement 70
The nonlocal Statement 70
The import Statement 71
The from Statement 72
The class Statement 73
The try Statement 75
The raise Statement 78
The assert Statement 80
The with Statement 80
Python 2.X Statements 82

Namespace and Scope Rules 82
Qualified Names: Object Namespaces 83

iv | Table of Contents



Unqualified Names: Lexical Scopes 83
Statically Nested Scopes 84

Object-Oriented Programming 85
Classes and Instances 85
Pseudoprivate Attributes 86
New Style Classes 87

Operator Overloading Methods 88
For All Types 88
For Collections (Sequences, Mappings) 93
For Numbers (Binary Operators) 94
For Numbers (Other Operations) 97
For Descriptors 98
For Context Managers 99
Python 2.X Operator Overloading Methods 99

Built-in Functions 102
Python 2.X Built-in Functions 119

Built-in Exceptions 124
Superclasses (Categories) 124
Specific Exceptions Raised 125
Warning Category Exceptions 129
Warnings Framework 130
Python 2.X Built-in Exceptions 131

Built-in Attributes 131
Standard Library Modules 132
The sys Module 133
The string Module 139

Module Functions and Classes 139
Constants 140

The os System Module 141
Administrative Tools 141
Portability Constants 142
Shell Commands 143

Table of Contents | v



Environment Tools 144
File Descriptor Tools 145
File Pathname Tools 147
Process Control 150
The os.path Module 153

The re Pattern-Matching Module 155
Module Functions 155
Regular Expression Objects 157
Match Objects 158
Pattern Syntax 159

Object Persistence Modules 163
dbm and shelve Modules 164
pickle Module 166

The tkinter GUI Module and Tools 168
tkinter Example 168
tkinter Core Widgets 169
Common Dialog Calls 170
Additional tkinter Classes and Tools 171
Tcl/Tk-to-Python/tkinter Mappings 171

Internet Modules and Tools 173
Commonly Used Library Modules 173

Other Standard Library Modules 175
The math Module 176
The time Module 176
The datetime Module 177
Threading Modules 177
Binary Data Parsing 178

Python Portable SQL Database API 179
API Usage Example 179
Module Interface 180
Connection Objects 181
Cursor Objects 181

vi | Table of Contents



Type Objects and Constructors 182
Python Idioms and Hints 183

Core Language Hints 183
Environment Hints 184
Usage Hints 185
Assorted Hints 187

Index 189

Table of Contents | vii





Python Pocket Reference

Introduction
Python is a general-purpose, object-oriented, and open source
computer programming language. It is commonly used for
both standalone programs and scripting applications in a wide
variety of domains, by hundreds of thousands of developers.

Python is designed to optimize developer productivity, soft-
ware quality, program portability, and component integration.
Python programs run on most platforms in common use, in-
cluding mainframes and supercomputers, Unix and Linux,
Windows and Macintosh, Java and .NET, and more.

This pocket reference summarizes Python types and state-
ments, special method names, built-in functions and excep-
tions, commonly used standard library modules, and other
prominent Python tools. It is intended to serve as a concise
reference tool for developers and is designed to be a companion
to other books that provide tutorials, code examples, and other
learning materials.

1



This fourth edition covers both Python versions 3.0 and 2.6,
and later releases in the 3.X and 2.X lines. This edition is fo-
cused primarily on Python 3.0, but also documents differences
in Python 2.6, and so applies to both versions. It has been
thoroughly updated for recent language and library changes
and expanded for new language tools and topics.

This edition also incorporates notes about prominent enhance-
ments in the imminent Python 3.1 release, which is intended
to subsume Python 3.0 (in this book, Python 3.0 generally
refers to the language variations introduced by 3.0 but present
in the entire 3.X line). Much of this edition applies to earlier
Python releases as well, with the exception of recent language
extensions.

Conventions
The following conventions are used in this book:

[]
Items in brackets are usually optional. The exceptions are
those cases where brackets are part of Python’s syntax.

*
Something followed by an asterisk can be repeated zero
or more times.

a | b
Items separated by a bar are often alternatives.

Italic
Used for filenames and URLs and to highlight new terms.

Constant width
Used for code, commands, and command-line options,
and to indicate the names of modules, functions, at-
tributes, variables, and methods.

Constant width italic
Used for replaceable parameter names in command
syntax.

2 | Python Pocket Reference



Using Code Examples
This book is here to help you get your job done. In general, you
may use the code in this book in your programs and docu-
mentation. You do not need to contact us for permission unless
you’re reproducing a significant portion of the code. For
example, writing a program that uses several chunks of code
from this book does not require permission. Selling or distrib-
uting a CD-ROM of examples from O’Reilly books does re-
quire permission. Answering a question by citing this book and
quoting example code does not require permission. Incorpo-
rating a significant amount of example code from this book
into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution
usually includes the title, author, publisher, and ISBN. For ex-
ample: “Python Pocket Reference, Fourth Edition, by Mark
Lutz. Copyright 2010 Mark Lutz, 978-0-596-15808-8.”

If you feel your use of code examples falls outside fair use or
the permission given above, feel free to contact us at
permissions@oreilly.com.

Safari® Books Online
Safari® Books Online is an on-demand digital
library that lets you easily search over 7,500
technology and creative reference books and
videos to find the answers you need quickly.

With a subscription, you can read any page and watch any
video from our library online. Read books on your cell phone
and mobile devices. Access new titles before they are available
for print, and get exclusive access to manuscripts in develop-
ment and post feedback for the authors. Copy and paste code
samples, organize your favorites, download chapters, book-
mark key sections, create notes, print out pages, and benefit
from tons of other time-saving features.

Safari® Books Online | 3

mailto:permissions@oreilly.com


O’Reilly Media has uploaded this book to the Safari® Books
Online service. To have full digital access to this book and
others on similar topics from O’Reilly and other publishers,
sign up for free at http://my.safaribooksonline.com.

Command-Line Options
Command lines are used to launch Python programs from a
system shell prompt. Command-line options intended for
Python itself appear before the specification of the program
code to be run. Options intended for the code to be run appear
after the program specification. Command lines have the fol-
lowing format:

python [option*]
  [ scriptfilename | -c command | -m module | - ] [arg*]

Python Options
-b

Issues warnings for calling str() with a bytes or
bytearray object, and comparing a bytes or bytearray
with a str. Option -bb issues errors instead.

-B
Do not write .pyc or .pyo byte-code files on imports.

-d
Turns on parser debugging output (for developers of the
Python core).

-E
Ignores Python environment variables described ahead
(such as PYTHONPATH).

-h
Prints help message and exit.

4 | Python Pocket Reference

http://my.safaribooksonline.com/?portal=oreilly


-i
Enters interactive mode after executing a script. Useful for
postmortem debugging.

-O
Optimizes generated byte-code (create and use .pyo byte-
code files). Currently yields a minor performance
improvement.

-OO
Operates like -O, the previous option, but also removes
docstrings from byte-code.

-s
Do not add the user site directory to the sys.path module
search path.

-S
Do not imply “import site” on initialization.

-u
Forces stdout and stderr to be unbuffered and binary.

-v
Prints a message each time a module is initialized, showing
the place from which it is loaded; repeats this flag for more
verbose output.

-V
Prints Python version number and exit.

-W arg
Functions as warning control; arg takes the form
action:message:category:module:lineno. See warnings
module documentation in the Python Library Reference
manual (available at http://www.python.org/doc/).

-x
Skips first line of source, allowing use of non-Unix forms
of #!cmd.

Command-Line Options | 5

http://www.python.org/doc/


Program Specification
scriptfilename

Denotes the name of a Python scriptfile to execute as the
main, topmost file of a program execute (e.g., python
main.py). The script’s name is made available in
sys.argv[0].

-c command
Specifies a Python command (as a string) to execute (e.g.,
python -c "print('spam' * 8)" runs a print call).
sys.argv[0] is set to -c.

-m module
Runs library module as a script: searches for module on
sys.path, and runs it as a top-level file (e.g., python -m
profile runs the Python profiler located in a standard li-
brary directory). sys.argv[0] is set to the module’s full
path name.

−
Reads Python commands from stdin (the default); enters
interactive mode if stdin is a tty (interactive device).
sys.argv[0] is set to −.

arg*
Indicates that anything else on the command line is passed
to the scriptfile or command (and appears in the built-in
list of strings sys.argv[1:]).

If no scriptfilename, command, or module is given, Python enters
interactive mode, reading commands from stdin (and using
GNU readline, if installed, for input).

Besides using traditional command lines at a system shell
prompt, you can also generally start Python programs by click-
ing their filenames in a file explorer GUI, by calling functions
in the Python/C API, by using program launch menu options
in IDEs such as IDLE, Komodo, Eclipse, NetBeans, and so on.

6 | Python Pocket Reference



NOTE
Python 2.6 does not support the -b option, which is re-
lated to Python 3.0’s string type changes. It supports
additional options:

• -t issues warnings for inconsistent mixtures of tabs
and spaces in indentation (-tt issues errors in-
stead). Python 3.0 always treats such mixtures as
syntax errors.

• -Q division-related options: -Qold (the default),
-Qwarn, -Qwarnall, and –Qnew. These are subsumed
by the new true division behavior of Python 3.0.

• −3 issues warnings about any Python 3.X incom-
patibilities in code.

Environment Variables
Environment variables are system-wide settings that span pro-
grams and are used for global configuration.

Operational Variables
PYTHONPATH

Augments the default search path for imported module
files. The format is the same as the shell’s PATH setting:
directory pathnames separated by colons (semicolons on
Windows). On module imports, Python searches for the
corresponding file or directory in each listed directory,
from left to right. Merged into sys.path.

PYTHONSTARTUP
If set to the name of a readable file, the Python commands
in that file are executed before the first prompt is displayed
in interactive mode.

Environment Variables | 7



PYTHONHOME
If set, the value is used as an alternate prefix directory for
library modules (or sys.prefix, sys.exec_prefix). The
default module search path uses sys.prefix/lib.

PYTHONCASEOK
If set, ignores case in import statements (on Windows).

PYTHONIOENCODING
encodingname[:errorhandler] override used for stdin,
stdout, and stderr streams.

Command-Line Option Variables
PYTHONDEBUG

If nonempty, same as -d option.

PYTHONDONTWRITEBYTECODE
If nonempty, same as -B option.

PYTHONINSPECT
If nonempty, same as -i option.

PYTHONNOUSERSITE
If nonempty, same as -s option.

PYTHONOPTIMIZE
If nonempty, same as -O option.

PYTHONUNBUFFERED
If nonempty, same as -u option.

PYTHONVERBOSE
If nonempty, same as -v option.

Built-in Types and Operators

Operators and Precedence
Table 1 lists Python’s expression operators. Operators in the
lower cells of this table have higher precedence (i.e., bind
tighter) when used in mixed-operator expressions without
parentheses.

8 | Python Pocket Reference



Table 1. Python 3.0 expression operators and precedence

Operator Description

yield X Generator function send() protocol

lambda args: expr Anonymous function maker

X if Y else Z Ternary selection (X is evaluated only if Y is true)

X or Y Logical OR: Y is evaluated only if X is false

X and Y Logical AND: Y is evaluated only if X is true

not X Logical negation

X in Y, X not in Y Membership: iterables, sets

X is Y, X is not Y Object identity tests

X < Y, X <= Y, X > Y, X >= Y Magnitude comparisons, set subset and
superset

X == Y, X != Y Equality operators

X | Y Bitwise OR, set union

X ^ Y Bitwise exclusive OR, set symmetric difference

X & Y Bitwise AND, set intersection

X << Y, X >> Y Shift X left, right by Y bits

X + Y, X – Y Addition/concatenation, subtraction/set
difference

X * Y, X % Y,

X / Y, X // Y

Multiplication/repetition, remainder/format,
division, floor division

-X, +X Unary negation, identity

˜X Bitwise NOT complement (inversion)

X ** Y Power (exponentiation)

X[i] Indexing (sequence, mapping, others)

X[i:j:k] Slicing (all bounds optional)

X(...) Call (function, method, class, other callable)

X.attr Attribute reference

(...) Tuple, expression, generator expression

[...] List, list comprehension

Built-in Types and Operators | 9



Operator Description

{...} Dictionary, set, dictionary and set
comprehension

Operator Usage Notes
• In Python 2.6, value inequality can be written as either

X != Y or X <> Y. In Python 3.0, the latter of these options
is removed because it is redundant.

• In Python 2.6, a backquotes expression `X` works the
same as repr(X), and converts objects to display strings.
In Python 3.0, use the more readable str() and repr()
built-in functions instead.

• In both Python 3.0 and 2.6, the X // Y floor division ex-
pression always truncates fractional remainders, and
returns an integer result for integers.

• The X / Y expression performs true division in 3.0 (always
retaining remainders in a floating-point result), and classic
division in 2.6 (truncating remainders for integers).

• The syntax [...] is used for both list literals and list com-
prehension expressions. The latter of these performs an
implied loop and collects expression results in a new list.

• The syntax (...) is used for tuples and expressions, as
well as generator expressions—a form of list comprehen-
sion that produces results on demand, instead of building
a result list. Parenthesis may sometimes be omitted in all
three constructs.

• The syntax {...} is used for dictionary literals. In Python
3.0, it is also used for set literals, and both dictionary and
set comprehensions; use set() and looping statements in
2.6.

• The yield and ternary if/else selection expressions are
available in Python 2.5 and later. The former returns
send() arguments in generators; the latter is a shorthand
for a multiline if statement. yield requires parentheses if
not alone on the right side of an assignment statement.

10 | Python Pocket Reference



• Comparison operators may be chained: X < Y < Z pro-
duces the same result as X < Y and Y < Z, but Y is evaluated
only once in the chained form.

• The slice expression X[I:J:K] is equivalent to indexing
with a slice object: X[slice(I, J, K)].

• In Python 2.6, magnitude comparisons of mixed types are
allowed—converting numbers to a common type, and or-
dering other mixed types according to the type name. In
Python 3.0, nonnumeric mixed-type magnitude compar-
isons are not allowed, and raise exceptions; this includes
sorts by proxy.

• Magnitude comparisons for dictionaries are also no longer
supported in Python 3.0 (though equality tests are); com-
paring sorted(dict.items()) is one possible replacement
in 3.0.

• Call expressions allow for positional and keyword argu-
ments, and arbitrarily large numbers of both; see “The
Expression Statement” on page 59 and “The def State-
ment” on page 64 for call syntax.

• Python 3.0 allows ellipsis (literally, ...) to be used as an
atomic expression anywhere in source code. This may be
used as an alternative to pass or None in some contexts
(e.g., stubbed-out function bodies, type-independent
variable initialization).

Operations by Category
All built-in types support the comparisons and Boolean oper-
ations listed in Table 2.

Boolean true means any nonzero number or any nonempty
collection object (list, dictionary, etc.). The built-in names
True and False are pre-assigned to true and false values and
behave like integers 1 and 0 with custom display formats. The
special object None is false.

Built-in Types and Operators | 11



Comparisons return True or False and are applied recursively
in compound objects as needed to determine a result.

Boolean and and or operators stop (short-circuit) as soon as a
result is known and return one of the two operand objects (on
left or right).

Table 2. Comparisons and Boolean operations

Operator Description

X < Y Strictly less thana

X <= Y Less than or equal to

X > Y Strictly greater than

X >= Y Greater than or equal to

X == Y Equal to (same value)

X != Y Not equal to (same as X<>Y in Python 2.6 only)b

X is Y Same object

X is not Y Negated object identity

X < Y < Z Chained comparisons

not X If X is false then True; else, False

X or Y If X is false then Y; else, X

X and Y If X is false then X; else, Y
a To implement comparison expressions, see both the rich comparison (e.g., __lt__ for
<) class methods in 3.0 and 2.6, and general __cmp__ method in 2.6, described in the
section “Operator Overloading Methods” on page 88.

b != and <> both mean not equal by value in 2.6, but != is the preferred syntax in 2.6, and
the only supported option in 3.0. is performs an identity test; == performs value com-
parison, and so is much more generally useful.

Tables 3 through 6 define operations common to types in the
three major type categories (sequence, mapping, and number),
as well as operations available for mutable (changeable) types
in Python. Most types also export additional type-specific op-
erations (e.g., methods), as described in the section “Specific
Built-in Types” on page 16.

12 | Python Pocket Reference



Table 3. Sequence operations (strings, lists, tuples, bytes, bytearray)

Operation Description Class method

X in S

X not in S

Membership tests __contains__,

__iter__,

__getitem__a

S1 + S2 Concatenation __add__

S * N, N * S Repetition __mul__

S[i] Index by offset __getitem__

S[i:j], S[i:j:k] Slicing: items in S from offset i
through j-1 by optional stride k

__getitem__b

len(S) Length __len__

min(S), max(S) Minimum, maximum item __iter__,

__getitem__

iter(S) Iteration protocol __iter__

for X in S:,

[expr for X in S],

map(func, S), etc.

Iteration (all contexts) __iter__,

__getitem__

a See also iterators, generators, and the __iter__ class method (see the section “The
yield Statement” on page 68). If defined, __contains__ is preferred over
__iter__, and __iter__ is preferred over __getitem__.

b In Python 2.6, you may also define __getslice__, __setslice__, and
__delslice__ to handle slicing operations. In 3.0, these are removed in favor of passing
slice objects to their item-based indexing counterparts. Slice objects may be used explicitly
in indexing expressions in place of i:j:k bounds.

Table 4. Mutable sequence operations (lists, bytearray)

Operation Description Class method

S[i] = X Index assignment: change item
at existing offset i

__setitem__

S[i:j] = S2,

S[i:j:k] = S2

Slice assignment: S from i to j
is replaced by S2, with optional
stride k

__setitem__

del S[i] Index deletion __delitem__

Built-in Types and Operators | 13



Operation Description Class method

del S[i:j],

del S[i:j:k]

Slice deletion __delitem__

Table 5. Mapping operations (dictionaries)

Operation Description Class method

D[k] Index by key __getitem__

D[k] = X Key assignment: change or cre-
ate entry for key k

__setitem__

del D[k] Delete item by key __delitem__

len(D) Length (number of keys) __len__

k in D Key membership testa Same as in Table 3

k not in D Converse of k in D Same as in Table 3

iter(S) Iterator object for keys Same as in Table 3

for k in D:, etc. Iterate through keys in D (all
iteration contexts)

Same as in Table 3

a In Python 2.X, key membership may also be coded as D.has_key(K). This method is
removed in Python 3.0 in favor of the in expression, which is also generally preferred in
2.6. See “Dictionaries” on page 41.

Table 6. Numeric operations (all number types)

Operation Description Class method

X + Y, X – Y Add, subtract __add__, __sub__

X * Y, X / Y,

X // Y, X % Y

Multiply, divide, floor divide,
remainder

__mul__,
__truediv__,

__floordiv__,
__mod__

-X, +X Negative, identity __neg__, __pos__

X | Y, X & Y,

X ^ Y

Bitwise OR, AND, exclusive OR
(integers)

__or__, __and__,
__xor__

14 | Python Pocket Reference



Operation Description Class method

X << N, X >> N Bitwise left-shift, right-shift
(integers)

__lshift__,
__rshift__

˜X Bitwise invert (integers) __invert__

X ** Y X to the power Y __pow__

abs(X) Absolute value __abs__

int(X) Convert to integera __int__

float(X) Convert to float __float__

complex(X),
complex(re,im)

Make a complex value __complex__

divmod(X, Y) Tuple: (X/Y, X%Y) __divmod__

pow(X, Y [,Z]) Raise to a power __pow__
a In Python 2.6, the long() built-in function invokes the __long__ class method. In

Python 3.0, the int type subsumes long, which is removed.

Sequence Operation Notes

Indexing: S[i]
• Fetches components at offsets (first item is at offset 0).

• Negative indexes mean to count backward from the end
(last item is at offset −1).

• S[0] fetches the first item.

• S[−2] fetches the second-to-last item (S[len(S) − 2]).

Slicing: S[i:j]
• Extracts contiguous sections of a sequence.

• Slice boundaries default to 0 and sequence length.

• S[1:3] fetches from offsets 1 up to, but not including, 3.

• S[1:] fetches from offsets 1 through the end (length-1).

Built-in Types and Operators | 15



• S[:−1] fetches from offsets 0 up to, but not including, the
last item.

• S[:] makes a top-level (shallow) copy of sequence object
S.

• Slice assignment is similar to deleting and then inserting.

Slicing: S[i:j:k]
• If present, the third item k is a stride: added to the offset

of each item extracted.

• S[::2] is every other item in sequence S.

• S[::−1] is sequence S reversed.

• S[4:1:−1] fetches from offsets 4 up to, but not including,
1, reversed.

Other
• Concatenation, repetition, and slicing return new objects

(not always for tuples).

Specific Built-in Types
This section covers numbers, strings, lists, dictionaries, tuples,
files, and other core built-in types. Compound datatypes (e.g.,
lists, dictionaries, and tuples) can nest inside each other arbi-
trarily and as deeply as required. Sets may participate in nesting
as well, but may contain only immutable objects.

Numbers
This section covers basic number types (integers, floating-
point), as well as more advanced types (complex, decimals, and
fractions). Numbers are always immutable (unchangeable).

Literals and creation
Numbers are written in a variety of numeric constant forms.

16 | Python Pocket Reference



1234, −24, 0
Integers (unlimited precision)1

1.23, 3.14e-10, 4E210, 4.0e+210, 1., .1
Floating-point (normally implemented as C doubles in
CPython)

0o177, 0x9ff, 0b1111
Octal, hex, and binary literals for integers2

3+4j, 3.0+4.0j, 3J
Complex numbers

decimal.Decimal('1.33'), fractions.Fraction(4, 3)
Module-based types: decimal, fraction

int(), float(), complex()
Create numbers from other objects, or from strings
with possible base conversion; see “Built-in Func-
tions” on page 102

Operations
Number types support all number operations (see Table 6 on
page 14). In mixed-type expressions, Python converts
operands up to the type of the “highest” type, where integer is
lower than floating-point, which is lower than complex. As of
Python 3.0 and 2.6, integer and floating-point objects also have
a handful of methods and other attributes; see Python’s Library
Reference manual for details.

>>> (2.5).as_integer_ratio()           # float attributes
(5, 2)

1. In Python 2.6, there is a distinct type named long for unlimited-
precision integers; int is for normal integers with precision that is
usually limited to 32 bits. Long objects may be coded with a trailing
“L” (e.g., 99999L), though integers are automatically promoted to longs
if they require the extra precision. In 3.0, the int type provides
unlimited precision and so subsumes both the 2.6 int and long types;
the “L” literal syntax is removed in 3.0.

2. In Python 2.6, octal literals may also be written with just a leading zero
—0777 and 0o777 are equivalent. In 3.0, only the latter form is
supported for octal.

Specific Built-in Types | 17



>>> (2.5).is_integer()
False

>>> (2).numerator, (2).denominator     # int attributes
(2, 1)
>>> (255).bit_length(), bin(255)       # 3.1+ bit_length()
(8, '0b11111111')

Decimal and fraction
Python provides two additional numeric types in standard li-
brary modules—decimal is a fixed-precision floating-point
number, and fraction is a rational type that keeps numerator
and denominator explicitly. Both may be used to address in-
accuracies of floating-point arithmetic.

>>> 0.1 - 0.3
-0.19999999999999998

>>> from decimal import Decimal
>>> Decimal('0.1') - Decimal('0.3')
Decimal('-0.2')

>>> from fractions import Fraction
>>> Fraction(1, 10) - Fraction(3, 10)
Fraction(-1, 5)

>>> Fraction(1, 3) + Fraction(7, 6)
Fraction(3, 2)

Fractions automatically simplify results. By fixing precision
and supporting various truncation and rounding protocols,
decimals are useful for monetary applications. See the Python
Library Reference for details.

Other numeric types
Python also includes a set type (described in
“Sets” on page 49). Additional numeric types such as vectors
and matrixes are available as third-party open source exten-
sions (e.g., see the NumPy package). The third-party domain
also includes support for visualization, statistical packages,
and more.

18 | Python Pocket Reference



Strings
The normal str string object is an immutable (i.e., unchange-
able) array of characters, accessed by offset. As of Python 3.0,
there are three string types with very similar interfaces:

• str, an immutable sequence of characters, used for all
text, both ASCII and wider Unicode

• bytes, an immutable sequence of short integers, used for
binary byte data

• bytearray, a mutable variant of bytes

Python 2.X instead has two immutable string types: str, for 8-
bit text and binary data, and unicode, for Unicode text as de-
scribed in “Unicode Strings” on page 33. Python 2.6 also has
the Python 3.0 bytearray type as a back-port from 3.0, but it
does not impose as sharp a distinction between text and binary
data (it may be mixed with text strings freely in 2.6).

Most of this section pertains to all string types, but see “String
methods” on page 26, “Unicode Strings” on page 33, and
“Built-in Functions” on page 102 for more on bytes and
bytearray.

Literals and creation
Strings are written as a series of characters in quotes, optionally
preceded with a designator character.

"Python's", 'Python"s'
Double and single quotes work the same, and each can
embed unescaped quotes of the other kind.

"""This is a multiline block"""
Triple-quoted blocks collect lines into a single string, with
end-of-line markers (\n) inserted between the original
lines.

'Python\'s\n'
Backslash escape code sequences (see Table 7) are
replaced with the special-character byte values they rep-
resent (e.g., '\n' is a byte with binary value 10 decimal).

Specific Built-in Types | 19



"This" "is" "concatenated"
Adjacent string constants are concatenated. May span
lines if parenthesized.

r'a raw\string', R'another\one'
Raw strings: backslashes are retained literally (except at
the end of a string). Useful for regular expressions and
DOS directory paths: e.g., r'c:\dir1\file'.

The following literal forms make specialized strings described
in “Unicode Strings” on page 33:

b'...'
bytes string literal: sequence of 8-bit byte values repre-
senting raw binary data. Makes a bytes string in Python
3.0, and a normal str string in Python 2.6 (for 3.0 com-
patibility). See “String methods” on page 26, “Unicode
Strings” on page 33, and “Built-in Func-
tions” on page 102.

bytearray(...)
bytearray string construction: a mutable variant of
bytes. Available in both Python 2.6 and 3.0. See “String
methods” on page 26, “Unicode Strings” on page 33,
and “Built-in Functions” on page 102.

u'...'
Unicode string literal in Python 2.X only (normal str
strings support Unicode text in Python 3). See “Unicode
Strings” on page 33.

str(), bytes(), bytearray()
Create strings from objects, with possible Unicode en-
coding/decoding in Python 3.0. See “Built-in Func-
tions” on page 102.

hex(), oct(), bin()
Create hex/octal/binary digit strings from numbers. See
“Built-in Functions” on page 102.

String literals may contain escape sequences taken from Ta-
ble 7 to represent special bytes.

20 | Python Pocket Reference



Table 7. String constant escape codes

Escape Meaning Escape Meaning

\newline Ignored continuation \t Horizontal tab

\\ Backslash (\) \v Vertical tab

\' Single quote (') \N{id} Unicode dbase id

\" Double quote (") \uhhhh Unicode 16-bit hex

\a Bell \Uhhhhhhhh Unicode 32-bit hexa

\b Backspace \xhh Hex (at most 2 digits)

\f Formfeed \ooo Octal (up to 3 digits)

\n Linefeed \0 Null (not end of string)

\r Carriage return \other Not an escape
a \Uhhhhhhhh takes exactly eight hexadecimal digits (h); both \u and \U can be used

only in Unicode string literals.

Operations
All string types support all mutable sequence operations
(shown earlier in Table 3 on page 13), plus string method calls
(described ahead). In addition, the str type supports % string
formatting expressions and template substitution, and the
bytearray type supports mutable sequence operations (Table 4
on page 13, plus extra list-like methods). Also see the re string
pattern-matching module in “The re Pattern-Matching Mod-
ule” on page 155, and string-related built-in functions in the
section “Built-in Functions” on page 102.

String formatting
In both Python 2.6 and 3.0, normal str strings support two
different flavors of string formatting—operations that format
objects according to format description strings:

• The original expression, coded with the % operator: fmt %
(values)

• The new method, coded with call syntax:
fmt.format(values)

Specific Built-in Types | 21



Both produce new strings based on possibly type-specific sub-
stitution codes. Their results may be displayed or assigned to
variables for later use:

>>> '%s, %s, %.2f' % (42, 'spam', 1 / 3.0)
'42, spam, 0.33'

>>> '{0}, {1}, {2:.2f}'.format(42, 'spam', 1 / 3.0)
'42, spam, 0.33'

Although the method call seems to be more actively evolving
as these words are being written, the expression is used exten-
sively in existing code, and both forms are still fully supported.
Moreover, although some view the method form as marginally
more mnemonic and consistent, the expression is often simpler
and more concise. As these two forms are largely just minor
variations on a theme of equivalent functionality and com-
plexity, there is today no compelling reason to recommend one
over the other.

String formatting expression
String formatting expressions replace % targets in the string on
the left of the % operator, with values on the right (similar to
C’s sprintf). If more than one value is to be replaced, they must
be coded as a tuple to the right of the % operator. If just one
item is to be replaced, it can be coded as a single value or one-
item tuple on the right (nest tuples to format a tuple itself). If
key names are used on the left, a dictionary must be supplied
on the right, and * allows width and precision to be passed in
dynamically:

'The knights who say %s!' % 'Ni'
Result: 'The knights who say Ni!'

"%d %s %d you" % (1, 'spam', 4.0)
Result: '1 spam 4 you'

"%(n)d %(x)s" % {"n":1, "x":"spam"}
Result: '1 spam'

'%f, %.2f, %.*f' % (1/3.0, 1/3.0, 4, 1/3.0)
Result: '0.333333, 0.33, 0.3333'

22 | Python Pocket Reference



In the format string on the left of the % operator, substitution
targets have the following general format:

%[(keyname)][flags][width][.precision]typecode

keyname references an item in the expected dictionary; flags
can be − (left-justify), + (numeric sign), a space (leave a blank
before positive numbers), and 0 (zero fill); width is the total
field width; precision gives digits after .; and typecode is a
character from Table 8. Both width and precision can be coded
as a * to force their values to be taken from the next item in the
values to the right of the % operator when sizes are not known
until runtime. Hint: %s converts any object to its print repre-
sentation string.

Table 8. % string formatting type codes

Code Meaning Code Meaning

s String (or any object, uses str()) X x with uppercase

r s, but uses repr(), not str() e Floating-point exponent

c Character (int or str) E e with uppercase

d Decimal (base 10 integer) f Floating-point decimal

i Integer F f with uppercase

u Same as d (obsolete) g Floating-point e or f

o Octal (base 8 integer) G Floating-point E or F

x Hex (base 16 integer) % Literal '%'

String formatting method
The formatting method call works similar to the prior section’s
expression, but is invoked with normal method-call syntax on
the format string object, and identifies substitution targets with
{} syntax instead of %. Substitution targets in the format string
may name method-call arguments by position or keyword
name; may further reference argument attributes, keys, and
offsets; may accept default formatting or provide explicit type
codes; and may nest target syntax to pull values from the ar-
guments list:

Specific Built-in Types | 23



>>> '{0}, {food}'.format(42, food='spam')
'42, spam'

>>> import sys
>>> fmt = '{0.platform} {1[x]} {2[0]}'  # attr,key,index
>>> fmt.format(sys, {'x': 'ham', 'y': 'eggs'}, 'AB')
'win32 ham A'

>>> '{0} {1:+.2f}'.format(1 / 3.0, 1 / 3.0)
'0.333333333333 +0.33'

>>> '{0:.{1}f}'.format(1 / 3.0, 4)
'0.3333'

Most of these have equivalents in % expression usage patterns
(e.g., dictionary key and * value references), though the ex-
pression requires some operations to be coded outside the for-
mat string itself. Substitution targets in strings used for format
method calls take the following general form:

{fieldname!conversionflag:formatspec}

In this substitution target syntax:

• fieldname is a number or keyword naming an argument,
followed by optional “.name” attribute or “[index]” com-
ponent references.

• conversionflag is “r”, “s”, or “a” to call repr(), str(), or
ascii() on the value, respectively.

• formatspec specifies how the value should be presented,
including details such as field width, alignment, padding,
decimal precision, and so on, and ends with an optional
data type code.

The formatspec component after the colon character is for-
mally described as follows (brackets in this denote optional
components and are not coded literally):

[[fill]align][sign][#][0][width][.precision][typecode]

24 | Python Pocket Reference



align may be “<”, “>”, “=”, or “^”, for left alignment, right
alignments, padding after a sign character, or centered align-
ment, respectively. sign may be +, −, or space, and typecode is
generally the same as that for % expressions in Table 8, with the
following notable exceptions:

• The i and u type codes are absent; use d to display integers
in decimal (base 10) format.

• An extra b type code displays integers in binary format
(like using the bin() built-in).

• An extra % type code displays a number as a percentage.

A single object may also be formatted with the format(object,
formatspec) built-in function (see “Built-in Func-
tions” on page 102). Formatting may be customized with the
__format__ operator-overloading method in classes (see “Op-
erator Overloading Methods” on page 88).

NOTE
In Python 3.1 and later, a “,” preceding an integer or
floating-point designation in typecode inserts
thousands-separator commas:

'{0:,d}'.format(1000000)

creates '1,000,000', and:

'{0:13,.2f}'.format(1000000)

is ' 1,000,000.00'.

Also as of Python 3.1, field numbers are automatically
numbered sequentially if omitted from fieldname—the
following three have the same effect, though
auto-numbered fields may be less readable if many fields
are present:

'{0}/{1}/{2}'.format(x, y, z)' # explicit num
'{}/{}/{}'.format(x, y, z)     # 3.1 auto-num
'%s/%s/%s' % (x, y, z)         # expression

Specific Built-in Types | 25



Template string substitution
In Python 2.4 and later, another form of simple string substi-
tution is provided as an alternative to the string formatting ex-
pression and method described in the prior sections. The usual
way of substituting variables is with the % operator:

>>> '%(page)i: %(title)s' % {'page':2, 'title': 'PyRef4E'}
'2: PyRef4E'

For simpler formatting tasks, a Template class has been added
to the string module that uses $ to indicate a substitution:

>>> import string
>>> t = string.Template('$page: $title')
>>> t.substitute({'page':2, 'title': 'PyRef4E'})
'2: PyRef4E'

Substitution values can be provided as keyword arguments or
dictionary keys:

>>> s = string.Template('$who likes $what')
>>> s.substitute(who='bob', what=3.14)
'bob likes 3.14'
>>> s.substitute(dict(who='bob', what='pie'))
'bob likes pie'

A safe_substitute method ignores missing keys rather than
raising an exception:

>>> t = string.Template('$page: $title')
>>> t.safe_substitute({'page':3})
'3: $title'

String methods
In addition to the format() method described earlier, string
method calls provide higher-level text processing tools beyond
string expressions. Table 9 lists available string method calls;
S is any string object in this table. String methods that modify
text always return a new string and never modify the object in-
place (strings are immutable). See also the re module in the
section “The re Pattern-Matching Module” on page 155 for
pattern-based equivalents to some string type methods.

26 | Python Pocket Reference



Table 9. Python 3.0 string method calls

S.capitalize()

S.center(width, [, fill])

S.count(sub [, start [, end]])

S.encode([encoding [,errors]])

S.endswith(suffix [, start [, end]])

S.expandtabs([tabsize])

S.find(sub [, start [, end]])

S.format(fmtstr, *args, **kwargs)

S.index(sub [, start [, end]])

S.isalnum()

S.isalpha()

S.isdecimal()

S.isdigit()

S.isidentifier()

S.islower()

S.isnumeric()

S.isprintable()

S.isspace()

S.istitle()

S.isupper()

S.join(iterable)

S.ljust(width [, fill])

S.lower()

S.lstrip([chars])

S.maketrans(x[, y[, z]])

S.partition(sep)

S.replace(old, new [, count])

S.rfind(sub [,start [,end]])

S.rindex(sub [, start [, end]])

Specific Built-in Types | 27



S.rjust(width [, fill])

S.rpartition(sep)

S.rsplit([sep[, maxsplit]])

S.rstrip([chars])

S.split([sep [,maxsplit]])

S.splitlines([keepends])

S.startswith(prefix [, start [, end]])

S.strip([chars])

S.swapcase()

S.title()

S.translate(map)

S.upper()

S.zfill(width)

byte and bytearray methods
Python 3.0 bytes and bytearray string types have similar
method sets, but do not overlap exactly with the normal str
string type (str is Unicode text, bytes is raw binary data, and
bytearray is mutable). In the following, set(X) – set(Y) com-
putes items in X that are not in Y:

• bytes and bytearray do not support Unicode encoding
(they are raw bytes, not decoded text) or string formatting
(str.format and the % operator implemented with
__mod__)

• str does not support Unicode decoding (it is already-
decoded text)

• bytearray has unique mutable in-place methods similar to
list:

>>> set(dir(str)) - set(dir(bytes))
{'isprintable', 'format', '__mod__', 'encode',
'isidentifier', '_formatter_field_name_split',
'isnumeric', '__rmod__', 'isdecimal',
'_formatter_parser', 'maketrans'}

28 | Python Pocket Reference



>>> set(dir(bytes)) - set(dir(str))
{'decode', 'fromhex'}

>>> set(dir(bytearray)) - set(dir(bytes))
{'insert', '__alloc__', 'reverse', 'extend', 
'__delitem__', 'pop', '__setitem__', 
'__iadd__', 'remove', 'append', '__imul__'}

Besides methods, bytes and bytearray also support the usual
sequence operations in Table 3 on page 13, and bytearray sup-
ports mutable sequence operations in Table 4 on page 13. See
more in “Unicode Strings” on page 33 and “Built-in Func-
tions” on page 102.

NOTE
The set of string methods available in Python 2.6 varies
slightly (e.g., there is a decode method for 2.6’s different
Unicode type model). The Python 2.6 unicode string
type has a nearly identical interface to 2.6 str objects.
Consult the Python 2.6 Library Reference or run
dir(str) and help(str.method) interactively for more
details.

The following sections go into more detail on some of the
methods listed in Table 9. In all of the following that return a
string result, the result is a new string. (Because strings are im-
mutable, they are never modified in-place.) Whitespace means
spaces, tabs, and end-of-line characters (everything in
string.whitespace).

Searching
s.find(sub, [, start [, end]])

Returns offset of the first occurrence of string sub in s,
between offsets start and end (which default to 0 and
len(s), the entire string). Returns −1 if not found. Also see
the in membership operator, which may be used to test
substring membership in a string.

Specific Built-in Types | 29



s.rfind(sub, [, start [, end]])
Like find, but scans from the end (right to left).

s.index(sub [, start [, end]])
Like find, but raises ValueError if not found instead of
returning −1.

s.rindex(sub [, start [, end]])
Like rfind, but raises ValueError if not found instead of
returning −1.

s.count(sub [, start [, end]])
Counts the number of nonoverlapping occurrences
of sub in s, from offsets start to end (defaults: 0, len(s)).

s.startswith(sub [, start [, end]])
True if string s starts with substring sub. start and end give
optional begin and end points for matching sub.

s.endswith(sub [, start [, end]])
True if string s ends with substring sub. start and end give
optional begin and end points for matching sub.

Splitting and joining
s.split([sep [, maxsplit]])

Returns a list of the words in the string s, using sep as the
delimiter string. If maxsplit is given, at most maxsplit
splits are done. If sep is not specified or is None, any white-
space string is a separator. 'a*b'.split('*') yields
['a','b']. Use list(s) to convert a string to a list of char-
acters (e.g., ['a','*','b']).

sep.join(iterable)
Concatenates an iterable (e.g., list or tuple) of strings into
a single string, with sep added between each item. sep can
be " (an empty string) to convert a list of characters to a
string ('*'.join(['a','b']) yields 'a*b').

s.replace(old, new [, count])
Returns a copy of string s with all occurrences of substring
old replaced by new. If count is passed, the first count oc-
currences are replaced. This works like a combination of
x=s.split(old) and new.join(x).

30 | Python Pocket Reference



s.splitlines([keepends])
Splits string s on line breaks, returning lines list. The result
does not retain line break characters unless keepends is
true.

Formatting
s.capitalize()

Capitalizes the first character of string s.

s.expandtabs([tabsize])
Replaces tabs in string s with tabsize spaces (default is 8).

s.strip([chars])
Removes leading and trailing whitespace from string s (or
characters in chars if passed).

s.lstrip([chars])
Removes leading whitespace from string s (or characters
in chars if passed).

s.rstrip([chars])
Removes trailing whitespace from string s (or characters
in chars if passed).

s.swapcase()
Converts all lowercase letters to uppercase, and vice versa.

s.upper()
Converts all letters to uppercase.

s.lower()
Converts all letters to lowercase.

s.ljust(width [, fill])
Left-justifies string s in a field of the given width; pads on
right with character fill (which defaults to a space). The
String formatting expression and method can achieve sim-
ilar effects.

s.rjust(width [, fill])
Right-justifies string s in a field of the given width; pads
on left with character fill (which defaults to a space). The
String formatting expression and method can achieve sim-
ilar effects.

Specific Built-in Types | 31



s.center(width [, fill])
Centers string s in a field of the given width; pads on left
and right with character fill (which defaults to a space).
The String formatting expression and method can achieve
similar effects.

s.zfill(width)
Pads string s on left with zero digits to produce a string
result of the desired width (can also achieve with % string
formatting expression).

s.translate(table [, deletechars])
Deletes all characters from string s that are in
deletechars (if present), then translates the characters us-
ing table, a 256-character string giving the translation for
each character value indexed by its ordinal.

s.title()
Returns a title-cased version of the string: words start with
uppercase characters; all remaining cased characters are
lowercase.

Content tests
s.is*()

The is*() Boolean tests work on strings of any length.
They test the content of strings for various categories (and
always return False for an empty).

The original string module
Starting in Python 2.0, most of the string-processing functions
previously available in the standard string module became
available as methods of string objects. If X references a string
object, a string module function call such as:

import string
res = string.replace(X, 'span', 'spam')

is usually equivalent in Python 2.0 to a string method call such
as:

res = X.replace('span', 'spam')

32 | Python Pocket Reference



But the string method call form is preferred and quicker, and
string methods require no module imports. Note that the
string.join(list, delim) operation becomes a method of the
delimiter string delim.join(list). All these functions are re-
moved from the string module in Python 3.0: use the equiva-
lent string object methods instead.

Unicode Strings
Technically, all text is Unicode text, including the simple 8-bit
ASCII encoding scheme. Python supports Unicode (wide)
character strings, which represent each character with 16 or
more bits, not 8. This support differs in Python lines. Python
3.0 treats all text as Unicode and represents binary data sepa-
rately, while Python 2.X distinguishes 8-bit text (and data)
from wider Unicode text. Specifically:

• In Python 2.6, the str type represents both 8-bit text and
binary data, and a separate unicode type handles wide-
character Unicode text. A u'ccc' literal form supports
coding binary data, and a codecs module supports reading
and writing files containing Unicode text.

• In Python 3.0, the normal str string type and literal han-
dles all text (both 8 bit and wider Unicode), and a separate
bytes type represents 8-bit binary data. bytes may be
coded with the b'ccc' literal form; it is an immutable
sequence of small integers, but supports most str opera-
tions, and prints as ASCII text when possible. Also in 3.0,
files imply str and bytes objects in text and binary mode;
text mode files automatically encode and decode text; and
an additional bytearray type is a mutable variant of
bytes, with extra list-like methods for in-place changes.
bytearray is also present in 2.6, but bytes is not (b'ccc'
creates a str in 2.6 for compatibility).

Specific Built-in Types | 33



Unicode support in Python 3.0
Python 3.0 allows non-ASCII characters to be coded in strings
with hex (\x) and both 16- and 32-bit Unicode (\u, \U) escapes.
In addition, chr() supports Unicode character codes:

>>> 'A\xE4B'
'AäB'
>>> 'A\u00E4B'
'AäB'
>>> 'A\U000000E4B'
'AäB'
>>> chr(0xe4)
'ä'

Normal strings may be encoded into raw bytes and raw bytes
may be decoded into normal strings, using either default or
explicit encodings:

>>> 'A\xE4B'.encode('latin-1')
b'A\xe4B'
>>> 'A\xE4B'.encode()
b'A\xc3\xa4B'
>>> 'A\xE4B'.encode('utf-8')
b'A\xc3\xa4B'
>>>
>>> b'A\xC3\xA4B'.decode('utf-8')
'AäB'

File objects also automatically decode and encode on input and
output, and accept an encoding name to override the default
encoding:

>>> S = 'A\xE4B'
>>> open('uni.txt', 'w', encoding='utf-8').write(S)
3
>>> open('uni.txt', 'rb').read()
b'A\xc3\xa4B'
>>>
>>> open('uni.txt', 'r', encoding='utf-8').read()
'AäB'

byte and bytearray strings
Python 3.0 bytes and bytearray string objects represent 8-bit 
binary data (including encoded Unicode text); print in ASCII

34 | Python Pocket Reference



when possible; and support most normal str string operations
including methods and sequence operations:

>>> B = b'spam'
>>> B
b'spam'
>>> B[0]                # sequence ops
115
>>> B + b'abc'
b'spamabc'
>>> B.split(b'a')       # methods
[b'sp', b'm']
>>> list(B)             # sequence of int
[115, 112, 97, 109]

bytearray additionally supports list-like mutable operations:

>>> BA = bytearray(b'spam')
>>> BA
bytearray(b'spam')
>>> BA[0]
115
>>> BA + b'abc'
bytearray(b'spamabc')
>>> BA[0] = 116         # mutability
>>> BA.append(115)      # list methods
>>> BA
bytearray(b'tpams')

See also the discussion of byte and bytearray methods in
“String methods” on page 26, and the type constructor calls in
“Built-in Functions” on page 102. Python 2.6 has bytearray
but not bytes (in 2.6 b'ccc' is a synonym for 'ccc', and creates
a normal str string).

Unicode support in Python 2.X
In Python 2.X Unicode strings are written as u'string' (in
Python 3.0 the normal string type and literal are used for Uni-
code). Arbitrary Unicode characters can be written using a
special escape sequence, \uHHHH, where HHHH is a four-digit hex-
adecimal number from 0000 to FFFF. The traditional \xHH es-
cape sequence can also be used, and octal escapes can be used
for characters up to +01FF, which is represented by \777.

Specific Built-in Types | 35



Like normal strings, all immutable sequence operations apply
to unicode. Normal and Unicode string objects can be freely
mixed in Python 2; combining 8-bit and Unicode strings al-
ways coerces to Unicode, using the default ASCII encoding
(e.g., the result of 'a' + u'bc' is u'abc'). Mixed-type opera-
tions assume the 8-bit string contains 7-bit U.S. ASCII data
(and raise an error for non-ASCII characters). The built-in
str() and unicode() functions can be used to convert between
normal and Unicode strings. The encode string method applies
a desired encoding scheme to Unicode strings. A handful of
related modules (e.g., codecs) and built-in functions are also
available.

Lists
Lists are mutable (changeable) arrays of object references, ac-
cessed by offset.

Literals and creation
Lists are written as a comma-separated series of values enclosed
in square brackets.

[]
An empty list.

[0, 1, 2, 3]
A four-item list: indexes 0...3.

alist = ['spam', [42, 3.1415], 1.23, {}]
Nested sublists: alist[1][0] fetches 42.

alist = list('spam')
Creates a list of all items in any iterable, by calling the type
constructor function.

alist = [x**2 for x in range(9)]
Creates a list by collecting expression results during iter-
ation (list comprehension).

36 | Python Pocket Reference



Operations
Operations include all sequence operations (see Table 3 on
page 13), plus all mutable sequence operations (see Table 4 on
page 13), plus the following list methods:

alist.append(x)
Inserts the single object x at the end of alist, changing the
list in-place.

alist.extend(x)
Inserts each item in any iterable x at the end of alist in-
place (an in-place +). Similar to alist[len(alist):] =
list(x).

alist.sort(key=None, reverse=False)
Sorts alist in-place, in ascending order by default. If
passed, key specifies a function of one argument that is
used to extract or compute a comparison value from each
list element. If reverse is passed and true, the list elements
are sorted as if each comparison were reversed. For ex-
ample: alist.sort(key=str.lower, reverse=True). See
also the sorted() built-in function.

alist.reverse()
Reverses items in alist in-place.

alist.index(x [, i [, j]])
Returns the index of the first occurrence of object x in
alist; raises an exception if not found. This is a search
method. If i and j are passed, it returns the smallest k such
that s[k] == x and i <= k < j.

alist.insert(i, x)
Inserts object x into alist at offset i (like alist[i:i] =
[x], for positive i).

alist.count(x)
Returns the number of occurrences of x in alist.

alist.remove(x)
Deletes the first occurrence of object x from alist;
raises an exception if not found. Same as del
alist[alist.index(x)].

Specific Built-in Types | 37



alist.pop([i])
Deletes and returns the last (or offset i) item in alist. Use
with append to implement stacks. Same as x=alist[i];
del alist[i]; return x, where i defaults to −1, the last
item.

NOTE
In Python 2.X, the list sort method signature is
alist.sort(cmp=None, key=None, reverse=False),
where cmp is a two-argument comparison function,
which returns a value less than, equal to, or greater than
zero to denote a less, equal, and greater result. The com-
parison function is removed in 3.0 because it was typi-
cally used to map sort values and reverse sort order—
use cases supported by the remaining two arguments.

List comprehension expressions
A list literal enclosed in square brackets ([...]) can be a simple
list of expressions or a list comprehension expression of the
following form:

[expression for expr1 in iterable1 [if condition1]
            for expr2 in iterable2 [if condition2] ...
            for exprN in iterableN [if conditionN] ]

List comprehensions construct result lists: they collect all val-
ues of expression, for each iteration of all nested for loops, for
which each optional condition is true. The second through nth
for loops and all if parts are optional, and expression and
condition can use variables assigned by nested for loops.
Names bound inside the comprehension are created in the
scope where the comprehension resides in 2.X (but local to the
expression in 3.X).

Comprehensions are similar to the map() built-in function:

>>> [ord(x) for x in 'spam']
[115, 112, 97, 109]
>>> map(ord, 'spam')
[115, 112, 97, 109]

38 | Python Pocket Reference



but can often avoid creating a temporary helper function:

>>> [x**2 for x in range(5)]
[0, 1, 4, 9, 16]
>>> map((lambda x: x**2), range(5))
[0, 1, 4, 9, 16]

Comprehensions with conditions are similar to filter:

>>> [x for x in range(5) if x % 2 == 0]
[0, 2, 4]
>>> filter((lambda x: x % 2 == 0), range(5))
[0, 2, 4]

Comprehensions with nested for loops are similar to the nor-
mal for:

>>> [y for x in range(3) for y in range(3)]
[0, 1, 2, 0, 1, 2, 0, 1, 2]

>>> res = []
>>> for x in range(3):
...     for y in range(3):
...         res.append(y)
>>> res
[0, 1, 2, 0, 1, 2, 0, 1, 2]

Generator expressions
As of Python 2.4, generator expressions achieve results similar
to list comprehensions, without generating a physical list to
hold all results. Generator expressions define a set of results,
but do not materialize the entire list, to save memory; instead,
they create a generator that will return elements one by one in
iteration contexts. For example:

ords = (ord(x) for x in aString if x not in skipThese)
for o in ords:
    ...

Generator expressions are written inside parentheses rather
than square brackets, but otherwise support all list compre-
hension syntax. The parentheses used for a function with a
single argument suffice when creating an iterator to be passed
to a function:

sum(ord(x) for x in aString)

Specific Built-in Types | 39



Generator expression loop variables (x, in the prior example)
are not accessible outside the generator expression. In Python
2.X, list comprehensions leave the variable assigned to its last
value; Python 3.0 changes this to make list comprehensions’
scope work like generator expressions.

Use the iterator protocol’s __next__() method (next() in
Python 2.X) to step through results outside iteration contexts
such as for loops, and use the list call to produce a list of all
results, if required:

>>> squares = (x ** 2 for x in range(5))
>>> squares
<generator object <genexpr> at 0x027C1AF8>
>>> squares.__next__()
0
>>> squares.__next__()               # or next(squares)
1
>>> list(x ** 2 for x in range(5))
[0, 1, 4, 9, 16]

See “The yield Statement” on page 68 for more on generators
and iterators, including additional generator methods.

Other generators and comprehensions
See also the related yield statement, dictionary comprehen-
sions, and set comprehensions elsewhere in this book. The lat-
ter two are similar expressions that produce dictionaries and
sets; they support syntax identical to list comprehensions and
generator expressions, but are coded within {}, and dictionary
comprehensions begin with a key:value expression pair:

>>> [x * x for x in range(10)]      # List comp.
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

>>> (x * x for x in range(10))      # Generator expr.
<generator object at 0x009E7328>

>>> {x * x for x in range(10)}      # Set comp. (3.0)
{0, 1, 4, 81, 64, 9, 16, 49, 25, 36}

>>> {x: x * x for x in range(10)}   # Dict comp. (3.0)
{0: 0, 1: 1, 2: 4, 3: 9, 4: 16, 5: 25, 6: 36, 7: 49,
8: 64, 9: 81}

40 | Python Pocket Reference



Dictionaries
Dictionaries are mutable tables of object references, accessed
by key, not position. They are unordered collections,
implemented internally as dynamically expandable hash
tables. Dictionaries have changed significantly in Python 3.0:

• In Python 2.X, the keys()/values()/items() methods
return lists; there is a has_key() lookup method; there are
distinct iterator methods iterkeys()/itervalues()/
iteritems(); and dictionaries may be compared directly.

• In Python 3.0, the keys()/values()/items() methods re-
turn iterable view objects instead of lists; has_key() is re-
moved in favor of in expressions; Python 2.X iterator
methods are removed in favor of view object iteration;
dictionaries cannot be compared directly, but their
sorted(D.items()) can; and there is a new dictionary com-
prehension expression.

• Python 3.0 view objects produce results on demand, retain
the original order in the dictionary, reflect future dictio-
nary changes, and may support set operations. Key views
are always set-like, value views never are, and item views
are if all their items are unique and hashable (immutable).
See “Sets” on page 49 for set expressions that may be
applied to some views. Pass views to the list() call to
force generation of all their results at once (e.g., for dis-
play, or for list.sort()).

Literals and creation
Dictionary literals are written as comma-separated series of
key:value pairs inside curly braces, the dict() built-in supports
other creation patterns, and comprehensions employ iteration
in Python 3.0. Assigning to new keys generates new entries.
Any immutable object can be a key (e.g., string, number, tu-
ple), and class instances can be keys if they inherit hashing
protocol methods. Tuple keys support compound values (e.g.,
adict[(M,D,Y)], with parentheses optional).

Specific Built-in Types | 41



{}
An empty dictionary.

{'spam': 2, 'eggs': 3}
A two-item dictionary: keys 'spam' and 'eggs'.

adict = { 'info': { 42: 1, type("): 2 }, 'spam': [] }
Nested dictionaries: adict['info'][42] fetches 1.

adict = dict(name='Bob', age=45, job=('mgr', 'dev'))
Creates a dictionary by passing keyword arguments to the
type constructor.

adict = dict(zip('abc', [1, 2, 3]))
Creates a dictionary by passing key/value tuples list to the
type constructor.

adict = dict([['a', 1], ['b', 2], ['c', 3]])
Same effect as prior line: any iterable of keys and values.

adict = {c: ord(c) for c in 'spam'}
Dictionary comprehension expression (Python 3). See
“List comprehension expressions” on page 38 for syntax.

Operations
Operations comprise all mapping operations (see Table 5 on
page 14), plus the following dictionary-specific methods.

adict.keys()
All keys in adict. In Python 2.X, this returns a list. In
Python 3.0, it returns an iterable view object described
earlier. for k in adict: also supports keys iteration.

adict.values()
All stored values in adict. In Python 2.X, this returns a
list. In Python 3.0, it returns an iterable view object de-
scribed earlier.

adict.items()
Tuple pairs (key, value), one for each entry in adict. In
Python 2.X, this returns a list. In Python 3.0, it returns an
iterable view object described earlier.

42 | Python Pocket Reference



adict.clear()
Removes all items from adict.

adict.copy()
Returns a shallow (top-level) copy of adict.

dict1.update(dict2)
Merges all of dict2’s entries into dict1, in-place, similar
to for (k, v) in dict2.items(): dict1[k] = v. In Python
2.4, also accepts an iterable of key/value pairs, as well as
keyword arguments (dict.update(k1=v1, k2=v2)).

adict.get(key [, default])
Similar to adict[key], but returns default (or None if no
default) instead of raising an exception when key is not
found in adict.

adict.setdefault(key, [, default])
Same as adict.get(key, default), but also assigns key to
default if it is not found in adict.

adict.popitem()
Removes and returns an arbitrary (key, value) pair.

adict.pop(k [, default])
Returns adict[k] if k in adict (and removes k); else, re-
turns default.

dict.fromkeys(seq [, value])
Creates a new dictionary with keys from seq and values
set to value (callable on instance or type name).

The following methods are available in Python 2.X only:

adict.has_key(k)
Returns True if adict has a key k, or False otherwise. In
Python 2.X only, this method is equivalent to k in
adict, but is not generally recommended; it is removed
in Python 3.0.

adict.iteritems(), adict.iterkeys(), adict.itervalues()
Returns an iterator over key/value pairs, keys only, or val-
ues only. In Python 3.0, these are removed because keys(),
values(), and items() return iterable view objects.

Specific Built-in Types | 43



The following operations are described in Table 5 on page
14, but relate to methods above:

k in adict
Returns True if adict has a key k, or False otherwise. Re-
places has_key() in Python 3.0.

for k in adict:
Iterates over keys in adict (all iteration contexts).
Dictionary supports direct iteration. for key in dict is
similar to for key in dict.keys(). The former uses the
dictionary object’s keys iterator. In Python 2.X, keys() re-
turns a new list that incurs a slight overhead. In Python
3.0, keys() returns an iterable view object instead of a
physically stored list, making both forms equivalent.

Tuples
Tuples are immutable arrays of object references, accessed by
offset.

Literals
Tuples are written as comma-separated series of values en-
closed in parentheses. The enclosing parentheses can some-
times be omitted (e.g., in for loop headers and = assignments).

()
An empty tuple.

(0,)
A one-item tuple (not a simple expression).

(0, 1, 2, 3)
A four-item tuple.

0, 1, 2, 3
Another four-item tuple (same as prior line); not valid in
function calls.

atuple = ('spam', (42, 'eggs'))
Nested tuples: atuple[1][1] fetches 'eggs'.

44 | Python Pocket Reference



atuple = tuple('spam')
Creates a tuple of all items in any iterable, by calling the
type constructor function.

Operations
All sequence operations (see Table 3 on page 13), plus the fol-
lowing tuple-specific methods in Python 2.6, 3.0, and later:

atuple.index(x [, i [, j]])
Returns the index of the first occurrence of object x in
atuple; raises an exception if not found. This is a search
method. If i and j are passed, it returns the smallest k such
that s[k] == x and i <= k < j.

atuple.count(x)
Returns the number of occurrences of x in atuple.

Files
The built-in open() function creates a file object, the most
common file interface. File objects export the data transfer
method calls in the next section. In Python 2.X only, the name
file() can be used as a synonym for open() when creating a
file object, but open() is the generally recommended spelling;
in Python 3.0, file() is no longer available.

See the open() function in the section “Built-in Func-
tions” on page 102 for full file-creation details. See also “Uni-
code Strings” on page 33 for the distinction between text and
binary files and their corresponding implied string type differ-
ences in Python 3.0.

Related file-like tools covered later in this book: see the dbm,
shelve, and pickle modules in the section “Object Persistence
Modules” on page 163; the os module descriptor-based file
functions and the os.path directory path tools in the section
“The os System Module” on page 141; and the Python SQL
database API in the section “Python Portable SQL Database
API” on page 179.

Specific Built-in Types | 45



Input files
infile = open('data.txt', 'r')

Creates input file ('r' means read as text, while 'rb' reads
binary with no line-break translation). The filename
string (e.g., 'data.txt') maps to the current working di-
rectory, unless it includes a directory path prefix (e.g.,
'c:\\dir\\data.txt'). The mode argument (e.g., 'r') is
optional and defaults to 'r'.

infile.read()
Reads entire file, returning its contents as a single string.
In text mode ('r'), line-ends are translated to '\n' by de-
fault. In binary mode ('rb'), the result string can contain
nonprintable characters (e.g., '\0'). In Python 3.0, text
mode decodes Unicode text into a str string, and binary
returns unaltered content in a bytes.

infile.read(N)
Reads at most N more bytes (1 or more); empty at
end-of-file.

infile.readline()
Reads next line (through end-of-line marker); empty at
end-of-file.

infile.readlines()
Reads entire file into a list of line strings. See also file iter-
ators, discussed next.

for line in infile:
Uses file iterators to step through lines in a file automati-
cally. Also available in all other iteration contexts (e.g.,
[line[:-1] for line in open('filename')]). The itera-
tion for line in fileobj: has an effect similar to for line
in fileobj.readlines():, but the file iterator version does
not load the entire file into memory and so is more
efficient.

46 | Python Pocket Reference



Output files
outfile = open('/tmp/spam', 'w')

Creates output file. (Note that 'w' means write text;
'wb' writes binary data with no line-break translation.)

outfile.write(S)
Writes string S onto file (all bytes in S, with no formatting
applied). In text mode, '\n' is translated to the platform-
specific line-end marker sequence by default. In binary
mode, the string can contain nonprintable bytes (e.g., use
'a\0b\0c' to write a string of five bytes, two of which are
binary zero). In Python 3.0, text mode encodes str Uni-
code strings, and binary mode writes bytes strings unal-
tered.

outfile.writelines(L)
Writes all strings in list L onto file.

Any files
file.close()

Manual close to free resources (Python currently auto-
closes files if still open when they are garbage-collected).
See also the upcoming file object context manager
discussion.

file.tell()
Returns the file’s current position.

file.seek(offset [, whence])
Sets the current file position to offset for random access.
whence can be 0 (offset from front), 1 (offset +/– from cur-
rent position), or 2 (offset from end). whence defaults to 0.

file.isatty()
Returns 1 if the file is connected to a tty-like interactive
device.

file.flush()
Flushes the file’s stdio buffer. Useful for buffered pipes,
if another process (or human) is reading. Also useful for
files created and read in the same process.

Specific Built-in Types | 47



file.truncate([size])
Truncates file to, at most, size bytes (or current position
if no size is passed). Not available on all platforms.

file.fileno()
Gets file number (descriptor integer) for file. This roughly
converts file objects to descriptors that can be passed to
tools in the os module. Use os.fdopen to convert a
descriptor to a file object, socketobj.makefile to convert
a socket to a file object, and io.StringIO
(StringIO.StringIO in Python 2.X) to convert a string to
an object with a file-like interface.

Attributes (all read-only)
file.closed

True if file has been closed.

file.mode
Mode string (e.g., 'r') passed to open function.

file.name
String name of corresponding external file.

File context managers
In standard Python (CPython), file objects normally close
themselves when garbage collected if still open. Because of this,
temporary files (e.g., open('name').read()) need not be closed
explicitly. To guarantee closes after a block of code exits, re-
gardless of whether the block raises an exception, use the try/
finally statement and manual closes:

myfile = open(r'C:\misc\script', 'w')
try:
    ...use myfile...
finally:
    myfile.close()

Or use the with/as statement available as of Python 2.6 and 3.0:

with open(r'C:\misc\script', 'w') as myfile:
    ...use myfile...

48 | Python Pocket Reference



The first of these inserts a close call as a termination-time ac-
tion. The latter of these employs file object context managers,
which guarantee that a file is automatically closed when the
enclosed code block exits. See the try and with statements in
“Statements and Syntax” on page 53.

Notes
• Some file-open modes (e.g., 'r+') allow a file to be both

input and output, and others (e.g., 'rb') specify binary-
mode transfer to suppress line-end marker conversions
(and Unicode encodings in Python 3.0). See open() in the
section “Built-in Functions” on page 102.

• File-transfer operations occur at the current file position,
but seek method calls reposition the file for random
access.

• File transfers can be made unbuffered: see open() in the
section “Built-in Functions” on page 102, and the -u
command-line flag in the section “Command-Line Op-
tions” on page 4.

• Python 2.X also includes an xreadlines() file object
method, which works the same as the file object’s auto-
matic line iterator, and has been removed in Python 3.0
due to its redundancy.

Sets
Sets are mutable and unordered collections of unique and im-
mutable objects. Sets support mathematical set operations
such as union and intersection. They are not sequences (they
are unordered), and not mappings (they do not map values to
keys), but support iteration, and function much like value-less
(or keys-only) dictionaries.

Literals and creation
In Python 2.X and 3.0, sets may be created by calling the
set() built-in function with an iterable whose items become
members of the resulting set. In Python 3.0, sets may also be

Specific Built-in Types | 49



created by {...} set literal and set comprehension expression
syntax, though set() is still used to make an empty set ({} is
the empty dictionary), and to build sets from existing objects.
Sets are mutable, but items in a set must be immutable; the
frozenset() built-in creates an immutable set, which can be
nested within another set.

set()
An empty set

aset = set('spam')
A four-item set: values 's', 'p', 'a', 'm' (accepts any
iterable)

aset = {'s', 'p', 'a', 'm'}
A four-item set, same as prior line (Python 3)

aset = {ord(c) for c in 'spam'}
Sets comprehension expression (Python 3); see “List com-
prehension expressions” on page 38 for syntax

aset = frozenset(range(−5, 5))
A frozen (immutable) set of 10 integers −5...4

Operations
The following documents the most prominent set operations
but is not complete; see Python’s Library Reference for an ex-
haustive list of set expressions and methods available. Most
expression operators require two sets, but their method-based
equivalents accept any iterable, denoted by “other” in the fol-
lowing (e.g., {1, 2} | [2, 3] fails, but {1, 2}.union([2, 3])
works):

value in aset
Membership: returns True if aset contains value

set1 – set2, set1.difference(other)
Difference: new set containing items in set1 that are not
in set2

set1 | set2, set1.union(other)
Union: new set containing items in either set1 or set2 with
no duplicates

50 | Python Pocket Reference



set1 & set2, set1.intersection(other)
Intersection: new set containing items in both set1 and
set2

set1 <= set2, set1.issubset(other)
Subset: tests whether every element in set1 is also in set2

set1 >= set2, set1.issubset(other)
Superset: tests whether every element in set2 is also in
set1

set1 < set2, set1 > set2
True subset and superset: also tests that set1 and set2 are
not the same

set1 ^ set2, set1.symmetric_difference(other)
Symmetric difference: new set with elements in either
set1 or set2 but not both

set1 |= set2, set1.update(other)
Updates (not for frozen sets): adds items in set2 to set1

set1.add(X), set1.remove(X), set1.discard(X), set1.pop(),
set1.clear()

Updates (not for frozen sets): adds an item, removes an
item, removes an item if present, removes and returns an
arbitrary item, removes all items

len(aset)
Length: numbers items in set

for x in aset:
Iteration: all iteration contexts

aset.copy()
Makes a copy of aset; same as set(aset)

Other Common Types
Python’s core types also include Booleans (described next); 
None (a placeholder object); types (accessed with the type()
built-in function, and always classes in Python 3); and
program-unit types such as functions, modules, and classes
(runtime object in Python).

Specific Built-in Types | 51



Boolean
The Boolean type, named bool, provides two predefined con-
stants, named True and False (available since version 2.3). For
most purposes, these constants can be treated as though they
were pre-assigned to integers 1 and 0, respectively (e.g., True
+ 3 yields 4). However, the bool type is a subclass of the integer
type int, and customizes it to print instances differently (True
prints as “True”, not “1”, and may be used as a built-in name
in logical tests).

Type Conversions
Tables 10 and 11 define common built-in tools for converting
from one type to another. (Python 2 also supports a long(S)
to-long and `X` to-string converters removed in Python 3.0.)

Table 10. Sequence converters

Converter Converts from Converts to

list(X),

[n for n in X]a

String, tuple, any iterable List

tuple(X) String, list, any iterable Tuple

''.join(X) Iterable of strings String
a The list comprehension form may be slower than list(). In Python 2.X only,
map(None, X) has the same effect as list(X) in this context, though this form of
map is removed in Python 3.0.

Table 11. String/object converters

Converter Converts from Converts to

eval(S) String Any object with a syntax
(expression)

int(S [, base]),a

float(S)

String or number Integer, float

repr(X),

str(X)

Any Python object String (repr is as code,
str is user-friendly)

52 | Python Pocket Reference



Converter Converts from Converts to

F % X, F.format(X) Objects with format codes String

hex(X), oct(X),
bin(X), str(X)

Integer types Hexadecimal, octal, bi-
nary, decimal digit strings

ord(C), chr(I) Character, integer code Integer code, character
a In version 2.2 and later, converter functions (e.g., int, float, str) also serve as class

constructors and can be subclassed. In Python 3.0, all types are classes, and all classes are
instances of the type class.

Statements and Syntax
This section describes the rules for syntax and variable names.

Syntax Rules
Here are the general rules for writing Python programs:

Control flow
Statements execute one after another, unless control-flow
statements are used (if, while, for, raise, calls, etc.).

Blocks
A block is delimited by indenting all of its statements by
the same amount, with spaces or tabs. A tab counts for
enough spaces to move the column to a multiple of 8.
Blocks can appear on the same line as a statement header
if they are simple statements.

Statements
A statement ends at the end of a line, but can continue
over multiple lines if a physical line ends with a \, an un-
closed (), [], or {} pair, or an unclosed, triple-quoted
string. Multiple simple statements can appear on a line if
they are separated with a semicolon (;).

Comments
Comments start with a # (not in a string constant) and
span to the end of the line.

Statements and Syntax | 53



Documentation strings
If a function, module file, or class begins with a string lit-
eral, it is stored in the object’s __doc__ attribute. See the
help() function, and the pydoc module and script in the
Python Library Reference for automated extraction and
display tools.

Whitespace
Generally significant only to the left of code, where in-
dentation is used to group blocks. Blank lines and spaces
are otherwise ignored except as token separators and
within string constants.

Name Rules
This section contains the rules for user-defined names (i.e.,
variables) in programs.

Name format
Structure

User-defined names start with a letter or underscore (_),
followed by any number of letters, digits, or underscores.

Reserved words
User-defined names cannot be the same as any Python
reserved word listed in Table 12.3

Case sensitivity
User-defined names and reserved words are always case-
sensitive: SPAM, spam, and Spam are different names.

Unused tokens
Python does not use the characters $ and ? in its syntax,
though they can appear in string constants and comments,
and $ is special in string template substitution.

3. In the Jython Java-based implementation, user-defined names can
sometimes be the same as reserved words.

54 | Python Pocket Reference



Creation
User-defined names are created by assignment but must
exist when referenced (e.g., counters must be explicitly
initialized to zero). See the section “Namespace and Scope
Rules” on page 82.

Table 12. Python 3.0 reserved words

False class finally is return

None continue for lambda try

True def from nonlocal while

and del global not with

as elif if or yield

assert else import pass  

break except in raise  

NOTE
In Python 2.6, print and exec are both reserved words,
as they take the form of statements, not built-in func-
tions. Also in Python 2.6, nonlocal, True, and False are
not reserved words; the first of these is unavailable, and
the latter two are simply built-in names. with and as are
reserved in both 2.6 and 3.0, but not in earlier 2.X re-
leases unless context managers are explicitly enabled.
yield is reserved as of 2.3; it morphed from statement to
expression later but is still a reserved word.

Name conventions
• Names that begin and end with two underscores (for ex-

ample, __init__) have a special meaning to the interpreter
but are not reserved words.

• Names beginning with one underscore (e.g., _X)
and assigned at the top level of a module are not
copied out by from...* imports (see also the
__all__ module export names list, mentioned in
the sections “The from Statement” on page 72 and

Statements and Syntax | 55



“Pseudoprivate Attributes” on page 86). In other con-
texts, this is an informal convention for internal names.

• Names beginning but not ending with two underscores
(e.g., __X) within a class statement are prefixed with the
enclosing class’s name (see “Pseudoprivate At-
tributes” on page 86).

• The name that is just a single underscore (_) is used in the
interactive interpreter (only) to store the result of the last
evaluation.

• Built-in function and exception names (e.g., open,
SyntaxError) are not reserved words. They live in the last-
searched scope and can be reassigned to hide the built-in
meaning in the current scope (e.g., open=myfunction).

• Class names commonly begin with an uppercase letter
(e.g., MyClass), and modules with a lowercase letter (e.g.,
mymodule).

• The first (leftmost) argument in a class method function
is usually named self.

Specific Statements
The following sections describe all Python statements. Each
section lists the statement’s syntax formats, followed by usage
details. For compound statements, each appearance of a suite
in a statement format stands for one or more other statements,
possibly indented as a block under a header line. A suite must
be indented under a header if it contains another compound
statement (if, while, etc.); otherwise, it can appear on the same
line as the statement header. The following are both valid
constructs:

if x < 42:
    print(x)
    while x: x = x − 1

if x < 42: print(x)

56 | Python Pocket Reference



The Assignment Statement
target = expression
target1 = target2 = expression
target1, target2 = expression1, expression2
target1 += expression
target1, target2,  ...  = same-length-iterable
(target1, target2, ...) = same-length-iterable
[target1, target2, ...] = same-length-iterable
target1, *target2, ...  = matching–length-iterable

Assignments store references to objects in targets. Expressions
yield objects. Targets can be simple names (X), qualified at-
tributes (X.attr), or indexes and slices (X[i], X[i:j]).

The second format assigns an expression object to each target.
The third format pairs targets with expressions, left to right.
The last three formats assign components of any sequence (or
other iterable) to corresponding targets, from left to right. The
sequence or iterable on the right must be the same length but
can be any type, unless a single starred-name appears in the
targets on the left to collect arbitrarily many items (Python 3.0
extended sequence assignment, discussed ahead):

target1, *target2, ... = iterable

Augmented assignment
A set of additional assignment statement formats, listed in Ta-
ble 13, are available. Known as augmented assignments, these
formats imply a binary expression plus an assignment. For in-
stance, the following two formats are roughly equivalent:

X = X + Y
X += Y

However, the reference to target X in the second format needs
to be evaluated only once, and in-place operations can be ap-
plied for mutables as an optimization (e.g., list1 += list2
automatically calls list1.extend(list2), instead of the slower
concatenation operation implied by +). Classes can overload
in-place assignments with method names that begin with an
i (e.g., __iadd__ for +=, __add__ for +). The format X //= Y (floor
division) is new as of version 2.2.

Specific Statements | 57



Table 13. Augmented assignment statements

X += Y X &= Y X -= Y X |= Y

X *= Y X ^= Y X /= Y X >>= Y

X %= Y X <<= Y X **= Y X //= Y

Normal and extended sequence assignment
In Python 2.X and 3.0, any sequence (or other iterable) of val-
ues may be assigned to any sequence of names, as long as the
lengths are the same. This basic sequence assignment form
works in most assignment contexts:

>>> a, b, c, d = [1, 2, 3, 4]
>>> a, d
(1, 4)

>>> for (a, b, c) in [[1, 2, 3], [4, 5, 6]]:
...     print(a, b, c)
...
1 2 3
4 5 6

In Python 3.0, sequence assignment is extended to allow col-
lection of arbitrarily many items, by prefixing one variable in
the assignment target with a star; when used, sequence lengths
need not match:

>>> a, *b = [1, 2, 3, 4]
>>> a, b
(1, [2, 3, 4])

>>> a, *b, c = [1, 2, 3, 4]
>>> a, b, c
(1, [2, 3], 4)

>>> *a, b = [1, 2, 3, 4]
>>> a, b
([1, 2, 3], 4)

>>> for (a, *b) in [[1, 2, 3], [4, 5, 6]]: print(a, b)
...
1 [2, 3]
4 [5, 6]

58 | Python Pocket Reference



The Expression Statement
expression
function([value, name=value, *name, **name...])
object.method([value, name=value, *name, **name...])

Any expression can appear on a line by itself as a statement
(but statements cannot appear as expressions). Expressions are
commonly used for calling functions and methods, and for
interactive-mode printing. Expression statements are also the
most common coding for yield expressions and Python 3.0
print() built-in function calls (though they are documented as
specific statements in this book).

Call syntax
In function and method calls, actual arguments are separated
by commas and are normally matched to arguments in function
def headers by position. Calls can optionally list specific argu-
ment names in functions to receive passed values by using the
name=value keyword argument syntax. Keyword arguments
match by name instead of position.

Arbitrary arguments call syntax
Special syntax can be used in function and method call argu-
ment lists to unpack arbitrarily many arguments. If pargs and
kargs are a sequence (or other iterable) and a dictionary,
respectively:

f(*pargs, **kargs)

This format calls function f with positional arguments from
iterable pargs, and keyword arguments from dictionary
kargs. For instance:

>>> def f(a, b, c, d): print(a, b, c, d)
...
>>> f(*[1, 2], **dict(c=3, d=4))
1 2 3 4

This syntax is intended to be symmetric with function header
arbitrary-argument syntax such as def f(*pargs, **kargs). It
is also flexible, since it can be easily combined with other

Specific Statements | 59



positional and keyword arguments (e.g., g(1, 2, foo=3,
bar=4, *args, **kw)).

In Python 2.X, the apply() built-in function achieves a similar
effect but is removed as of Python 3.0:

apply(f, pargs, kargs)

See also “The def Statement” on page 64 for more call syntax
details.

The print Statement
Printing takes the form of a built-in function call in Python 3.0,
which is commonly coded as an expression statement (on a line
by itself). Its call signature is as follows:

print([value [, value]*] 
   [, sep=string] [, end=string] [, file=file])

Each value denotes an object to be printed. This call is config-
ured by its three keyword-only arguments:

• sep is a string to place between values (defaults to a space:
' ').

• end is a string to place at the end of the text printed (de-
faults to a newline: '\n').

• file is the file-like object to which text is written (defaults
to standard output: sys.stdout).

Pass empty or custom strings to suppress space separators and
line feeds, and pass a file or file-like object to redirect output
in your script:

>>> print(2 ** 32, 'spam')
4294967296 spam

>>> print(2 ** 32, 'spam', sep='')
4294967296spam

>>> print(2 ** 32, 'spam', end=' '); print(1, 2, 3)
4294967296 spam 1 2 3

>>> print(2 ** 32, 'spam', sep='', file=open('out', 'w'))

60 | Python Pocket Reference



>>> open('out').read()
'4294967296spam\n'

Because by default print simply calls the write method of the
object currently referenced by sys.stdout, the following is
equivalent to print(X):

import sys
sys.stdout.write(str(X) + '\n')

To redirect print text to files or class objects, either pass any
object with a write method to the file keyword argument as
shown earlier, or reassign sys.stdout to any such object:

sys.stdout = open('log', 'a')  # any object with a write()
print('Warning-bad spam!')     # goes to object's write()

Because sys.stdout can be reassigned, the file keyword argu-
ment is not strictly needed; however, it can often avoid both
explicit write method calls, and saving and restoring the orig-
inal sys.stdout value around a redirected print when the
original stream is still required. See also “Built-in Func-
tions” on page 102.

Python 2.X print statements
In Python 2.X, printing is a specific statement instead of a built-
in function, of the following form:

print [value [, value]* [,]]
print >> file [, value [, value]* [,]]

The Python 2.X print statement displays the printable repre-
sentation of values on the stdout stream (the current setting of
sys.stdout) and adds spaces between values. The trailing
comma suppresses the linefeed that is normally added at the
end of a list, and is equivalent to using end=' ' in Python 3.0:

>>> print 2 ** 32, 'spam'
4294967296 spam

>>> print 2 ** 32, 'spam',; print 1, 2, 3
4294967296 spam 1 2 3

Specific Statements | 61



The Python 2.X print statement can also name an open output
file-like object to be the target of the printed text, instead of
sys.stdout:

fileobj = open('log', 'a')
print >> fileobj, "Warning-bad spam!"

If the file object is None, sys.stdout is used. This Python 2.X
>> syntax is equivalent to the file=F keyword argument in
Python 3.0. There is no equivalent to sep=S in Python 2’s
statement.

To use the Python 3.0 printing function in Python 2.X, run the
following:

from __future__ import print_function

The if Statement
if test:
    suite
[elif test:
    suite]*
[else:
    suite]

The if statement selects from among one or more actions
(statement blocks), and it runs the suite associated with the
first if or elif test that is true, or the else suite if all are false.

The while Statement
while test:
    suite
[else:
    suite]

The while loop is a general loop that keeps running the first
suite while the test at the top is true. It runs the else suite if the
loop exits without hitting a break statement.

62 | Python Pocket Reference



The for Statement
for target in iterable:
    suite
[else:
    suite]

The for loop is a sequence (or other iterable) iteration that
assigns items in iterable to target and runs the first suite for
each. The for statement runs the else suite if the loop exits
without hitting a break statement. target can be anything that
can appear on the left side of an = assignment statement (e.g.,
for (x, y) in tuplelist:).

Since Python 2.2, this works by first trying to obtain an itera-
tor object I with iter(iterable) and then calling that object’s
I.__next__() method repeatedly until StopIteration is raised
(I.__next__() is named I.next() in Python 2); see “The yield
Statement” on page 68 for more on iteration. In earlier ver-
sions, or if no iterator object can be obtained (e.g., no
__iter__ method is defined), this works instead by repeatedly
indexing iterable at successively higher offsets until an
IndexError is raised.

The pass Statement
pass

This is a do-nothing placeholder statement, and is used when
syntactically necessary. In Python 3.X only, ellipses (...) can
achieve similar effects.

The break Statement
break

This immediately exits the closest enclosing while or for loop
statement, skipping its associated else (if any).

Specific Statements | 63



The continue Statement
continue

This immediately goes to the top of the closest enclosing
while or for loop statement; it resumes in the loop header line.

The del Statement
del name
del name[i]
del name[i:j:k]
del name.attribute

The del statement deletes names, items, slices, and attributes,
as well as removes bindings. In the last three forms, name can
actually be any expression (with parentheses if required for
priority). For instance: del a.b()[1].c.d.

The def Statement
[decoration]
def name([arg,... arg=value,... *arg, **arg]):
    suite

The def statement makes new functions. It creates a function
object and assigns it to variable name. Each call to a function
object generates a new, local scope, where assigned names are 
local to the function call by default (unless declared
global). See also the section “Namespace and Scope
Rules” on page 82. Arguments are passed by assignment; in
a def header, they can be defined by any of the four formats in
Table 14.

The argument forms in Table 14 can also be used in a function
call, where they are interpreted as shown in Table 15 (see “The
Expression Statement” on page 59 for more on function call
syntax).

64 | Python Pocket Reference



Table 14. Argument formats in definitions

Argument format Interpretation

arg Matched by name or position

arg=value Default value if arg is not passed

*arg Collects extra positional args as a new tuple

**arg Collects extra keyword args passed as a new
dictionary

*name, arg[=value] Python 3.0 keyword-only arguments after *

*, arg[=value] Same as prior line

Table 15. Argument formats in calls

Argument format Interpretation

arg Positional argument

arg=value Keyword (match by name) argument

*arg Sequence (or other iterable) of positional arguments

**arg Dictionary of keyword arguments

Python 3.0 keyword-only arguments
Python 3.0 generalizes function definition to allow keyword-
only arguments, which must be passed by keyword, and are
required if not coded with defaults. Keyword-only arguments
are coded after the *, which may appear without a name if there
are keyword-only arguments but not arbitrary positionals:

>>> def f(a, *b, c): print(a, b, c)  # c required keyword
...
>>> f(1, 2, c=3)
1 (2,) 3

>>> def f(a, *, c=None): print(a, c) # c optional keyword
...
>>> f(1)
1 None
>>> f(1, c='spam')
1 spam

Specific Statements | 65



Python 3.0 function annotations
Python 3.0 also generalizes function definition to allow argu-
ments and return values to be annotated with object values for
use in extensions. Annotations are coded as :value after the
argument name and before a default, and ->value after the ar-
gument list. They are collected into an __annotations__ at-
tribute, but are not otherwise treated as special by Python itself:

>>> def f(a:99, b:'spam'=None) -> float:
...     print(a, b)
...
>>> f(88)
88 None
>>> f.__annotations__
{'a': 99, 'b': 'spam', 'return': <class 'float'>}

lambda expressions
Functions can also be created with the lambda expression form
which creates a new function object and returns it to be called
later, instead of assigning it to a name:

lambda arg, arg,...: expression

In lambda, arg is as in def, expression is the implied return value
of later calls. Because lambda is an expression, not a statement,
it can be used in places that a def cannot (e.g., within a dictio-
nary literal expression, or an argument list of a function call).
Because lambda computes a single expression instead of run-
ning statements, it is not intended for complex functions.

Defaults and attributes
Mutable default argument values are evaluated once at def
statement time, not on each call, and so can retain state be-
tween calls. However, some consider this behavior to be a cav-
eat, and classes and enclosing scope references are often better
state-retention tools; use None defaults for mutable and explicit
tests to avoid changes as shown in the following’s comments:

>>> def grow(a, b=[]):       # ..., b=None)
...     b.append(a)          # if b == None: b = []
...     print(b)

66 | Python Pocket Reference



...
>>> grow(1); grow(2)
[1]
[1, 2]

Both Python 2.X and 3.0 also support attachment of arbitrary
attributes to functions, as another form of state retention
(though attributes support only per-function-object state,
which is only per-call if each call generates a new function):

>>> grow.food = 'spam'
>>> grow.food
'spam'

Function and method decorators
As of Python 2.4, function definitions can be preceded by a
declaration syntax that describes the function that follows.
Known as decorators and coded with an @ character, these dec-
larations provide explicit syntax for functional techniques. The
function decorator syntax:

@decorator
def F():
    ...

is equivalent to this manual name rebinding:

def F():
    ...
F = decorator(F)

The effect is to rebind the function name to the result of passing
the function through the decorator callable. Function decora-
tors may be used to manage functions, or later calls made to
them (by using proxy objects). Decorators may be applied to
any function definition, including methods inside a class:

class C:
    @decorator
    def M():            # same as M = decorator(M)
        ...

More generally, the following nested decoration:

@A
@B

Specific Statements | 67



@C
def f(): ...

is equivalent to the following nondecorator code:

def f(): ...
f = A(B(C(f)))

Decorators may also take argument lists:

@spam(1,2,3)
def f(): ...

In this case spam must be a function returning a function
(known as a factory function); its result is used as the actual
decorator. Decorators must appear on the line before a func-
tion definition, and cannot be on the same line (e.g., @A def
f(): ... is illegal).

Because they accept and return callables, some built-in func-
tions, including property(), staticmethod(), and
classmethod(), may be used as function decorators (see “Built-
in Functions” on page 102). Decorator syntax is also sup-
ported for classes in Python 2.6 and 3.0 and later; see “The
class Statement” on page 73.

The return Statement
return [expression]

The return statement exits the enclosing function and returns
an expression value as the result of the call to the function. The
expression defaults to None if it’s omitted. Hint: return a tuple
for multiple-value function results.

The yield Statement
yield expression

The yield expression, commonly coded as an expression state-
ment (on a line by itself), suspends function state and returns
an expression. On the next iteration, the function’s prior state
is restored, and control resumes immediately after the yield

68 | Python Pocket Reference



statement. Use a return statement with no value to end the
iteration, or simply fall off the end of the function:

def generateSquares(N):
    for i in range(N):
        yield i ** 2

>>> G =  generateSquares(5)
>>> list(G)                     # force results generation
[0, 1, 4, 9, 16]

When used as an expression, yield returns the object passed
to the generator’s send() method at the caller (e.g., A = yield
X), and must be enclosed in parenthesis unless it is the only
item on the right of = (e.g., A = (yield X) + 42). In this mode,
values are sent to a generator by calling send(value); the gen-
erator is resumed, and the yield expression returns value. If
the regular __next__() method or next() built-in function is
called to advance, yield returns None.

Generators also have a throw(type) method to raise an excep-
tion inside the generator at the latest yield, and a close()
method that raises a new GeneratorExit exception inside the
generator to terminate the iteration. yield is standard as of
version 2.3 and later; generator send(), throw(), and close()
methods are available as of Python 2.5.

Generators and iterators
Functions containing a yield statement are compiled as
generators; when called, they return a generator object that
supports the iterator protocol to produce results on demand.
Iterators are objects returned by the iter(X) built-in function;
they define a __next__() method, which returns the next item
in the iteration or raises a StopIteration exception to end the
iteration.

All iteration contexts including for loops and comprehensions
automatically use the iteration protocol to step through col-
lections. In addition, the next(I) built-in function automati-
cally calls I.__next__() to simplify manual iteration loops.

Specific Statements | 69



Classes can provide an __iter__() method to intercept the
iter(X) built-in function call; if defined, its result has a
__next__() method used to step through results in iteration
contexts. If no __iter__() is defined, the __getitem__() index-
ing method is used as a fallback to iterate until IndexError.

In Python 2.X, the I.__next__() method is named I.next(),
but iteration works the same otherwise. The next() function
calls the I.next() method in 2.6. See also “Generator expres-
sions” on page 39 for related tools.

The global Statement
global name [, name]*

The global statement is a namespace declaration: when used
inside a class or function definition statement, it causes all ap-
pearances of name in that context to be treated as references to
a global (module-level) variable of that name—whether name is
assigned or not, and whether name already exists or not.

This statement allows globals to be created or changed within
a function or class. Because of Python’s scope rules, you need
to declare only global names that are assigned; undeclared
names are made local if assigned, but global references are au-
tomatically located in the enclosing module. See also “Name-
space and Scope Rules” on page 82.

The nonlocal Statement
nonlocal name [, name]*

Available in Python 3.0 only.

The nonlocal statement is a namespace declaration: when used
inside a nested function, it causes all appearances of name in
that context to be treated as references to a local variable of
that name in an enclosing function’s scope—whether name is
assigned or not.

name must exist in an enclosing function; this statement allows
it to be changed by a nested function. Because of Python’s

70 | Python Pocket Reference



scope rules, you need to declare only nonlocal names that are
assigned; undeclared names are made local if assigned, but
nonlocal references are automatically located in
enclosing functions. See also “Namespace and Scope
Rules” on page 82.

The import Statement
import module [, module]*
import [package.]* module [, [package.]* module]*
import [package.]* module as name 
                   [, [package.]*module as name]*

The import statement provides module access: it imports a
module as a whole. Modules in turn contain names fetched by
qualification (e.g., module.attribute). Assignments at the top
level of a Python file create module object attributes. The as
clause assigns a variable name to the imported module object;
it is useful to provide shorter synonyms for long module names.

module names the target module—usually a Python source file
or compiled module—which must be located in a directory in
sys.path. The module is given without its filename suffix (.py
and other extensions are omitted). The sys.path module im-
port search path is a directory list initialized from the program’s
top-level directory, PYTHONPATH settings, .pth path file contents,
and Python defaults.

Import operations compile a file’s source to byte-code if needed
(and save it in a .pyc file if possible), then execute the compiled
code from top to bottom to generate module object attributes
by assignment. Use the imp.reload() built-in function to force
recompilation and execution of already-loaded modules; see
also __import__ used by import in the section “Built-in Func-
tions” on page 102.

In the Jython implementation, imports can also name Java
class libraries; Jython generates a Python module wrapper that
interfaces with the Java library. In standard CPython, imports
can also load compiled C and C++ extensions.

Specific Statements | 71



Package imports
If used, the package prefix names give enclosing directory
names, and module dotted paths reflect directory hierarchies.
An import of the form import dir1.dir2.mod generally loads
the module file at directory path dir1/dir2/mod.py, where dir1
must be contained by a directory listed on the module search
path sys.path.

Each directory listed in an import statement must have a (pos-
sibly empty) __init__.py file that serves as the directory level’s
module namespace. This file is run on the first import through
the directory, and all names assigned in __init__.py files be-
come attributes of the directory’s module object. Directory
packages can resolve conflicts caused by the linear nature of
PYTHONPATH.

See also “Package relative import syntax” on page 73.

The from Statement
from [package.]* module import name [, name]*
from [package.]* module import *
from [package.]* module import name as othername
from [package.]* module import (name1, name2, ...)

The from statement imports variable names from a module so
that you can use those names later without the need to qualify
them with their module name. The from mod import * format
copies all names assigned at the top level of the module, except
names with a single leading underscore or names not listed in
the module’s __all__ list-of-strings attribute (if defined).

If used, the as clause creates a name synonym. If used,
package import paths work the same as in import statements
(e.g., from dir1.dir2.mod import X), but the package path
needs to be listed only in the from itself. Due to new scoping
rules, the * format generates warnings in version 2.2 if it ap-
pears nested in a function or class (this generates errors in
Python 3.0).

72 | Python Pocket Reference



As of Python 2.4, the names being imported from a module can
be enclosed in parentheses to span multiple lines without back-
slashes. As of Python 3.0, from module import * form is invalid
within a function, because it makes it impossible to classify
name scopes at definition time.

The from statement is also used to enable future (but still ex-
perimental) language additions, with from __future__ import
featurename. This format must appear only at the top of a
module file (preceded only by an optional doc string).

Package relative import syntax
In Python 3.0, the from statement (but not import) may use
leading dots in module names to specify that imports be rela-
tive to the package directory in which the importing module
resides:

from module import name [, name]*    # sys.path: abs
from . import module [, module]*     # pkg dir only: rel
from .module import name [, name]*   # pkg dir only: rel
from .. import module [, module]*    # parent dir in pkg
from ..module import name [, name]*  # parent dir in pkg

The leading-dots syntax works to make imports explicitly
package-relative in both Python 3.0 and 2.6. For imports
without the dots syntax, the package’s own directory is
searched first in Python 2.6, but not in Python 3.0. To enable
Python 3.0 package import semantics in Python 2.6, use:

from __future__ import  absolute_import

Absolute package imports, relative to a directory on sys.path,
are generally preferred over both implicit package-relative im-
ports in Python 2.X, and explicit package-relative import syn-
tax in both Python 2.X and 3.0.

The class Statement
[decoration]
class name [ ( super [, super]* [, metaclass=M] ) ]:
    suite

Specific Statements | 73



The class statement makes new class objects, which are fac-
tories for instance objects. The new class object inherits from
each listed super class in the order given, and is assigned to
variable name. The class statement introduces a new local name
scope, and all names assigned in the class statement generate
class object attributes shared by all instances of the class.

Important class features include the following (see also the
sections “Object-Oriented Programming” on page 85 and
“Operator Overloading Methods” on page 88):

• Superclasses (also known as base classes) from which a
new class inherits attributes are listed in parentheses in
the header (e.g., class Sub(Super1, Super2):).

• Assignments in the suite generate class attributes inher-
ited by instances: nested def statements make methods,
while assignment statements make simple class members.

• Calling the class generates instance objects. Each instance
object may have its own attributes, and inherits the at-
tributes of the class and all of its superclasses.

• Method functions receive a special first argument, usually
called self, which is the instance object that is the implied
subject of the method call, and gives access to instance
state information attributes. The staticmethod() and
classmethod() built-ins support additional kinds of meth-
ods, and Python 3.X methods may be treated as simple
functions when called through a class.

• Specially named __X__ method definitions intercept built-
in operations.

Class decorators in Python 2.6 and 3.0
In Python 2.6, 3.0, and later, decorator syntax can be applied
to class statements, in addition to function definitions. The
class decorator syntax:

@decorator
class C:
   def meth():
       ...

74 | Python Pocket Reference



is equivalent to this manual name rebinding:

class C:
     def meth():
       ...
C = decorator(C)

The effect is to rebind the class name to the result of passing
the class through the decorator callable. Like function decora-
tors, class decorators may be nested and support decorator ar-
guments. Class decorators may be used to manage classes, or
later instance-creation calls made to them (by using proxy
objects).

Metaclasses
Metaclasses are classes that generally subclass from the type
class, in order to customize creation of class objects
themselves:

class Meta(type):
    def __new__(meta, cname, supers, cdict):
        # run by inherited type.__call__
        return type.__new__(meta, cname, supers, cdict)

In Python 3.0, classes define their metaclasses using keyword
arguments in class headers:

class C(metaclass=Meta): ...

In Python 2.X, use class attributes instead:

class C:
    __metaclass__ = Meta
    ...

See also type() in “Built-in Functions” on page 102 for the
mapping from class statements.

The try Statement
try:
    suite
except [type [as value]]:       # [, value] in Python 2
    suite
[except [type [as value]]:

Specific Statements | 75



    suite]*
[else:
    suite]
[finally:
    suite]

try:
    suite
finally:
    suite

The try statement catches exceptions. try statements can spec-
ify except clauses with suites that serve as handlers for excep-
tions raised during the try suite, else clauses that run if no
exception occurs during the try suite, and finally clauses that
run whether an exception happens or not. except clauses catch
and recover from exceptions, and finally clauses define ter-
mination actions.

Exceptions can be raised by Python, or explicitly (see also the
raise statement discussed in the next section, “The raise State-
ment” on page 78). In except clauses, type is an expression
giving the exception class to be caught, and an extra variable
name value can be used to intercept the instance of the excep-
tion class that was raised. Table 16 lists all the clauses that can
appear in a try statement.

The try must have either an except or a finally, or both. The
order of its parts must be: try→except→else→finally, where
the else and finally are optional, and there may be zero or
more except, but there must be at least one except if an else
appears. finally interacts correctly with return, break, and
continue (if any of these pass control out of the try block, the
finally clause is executed on the way out).

Table 16. try statement clause formats

Clause format Interpretation

except: Catch all (or all other) exceptions

except type: Catch a specific exception only

76 | Python Pocket Reference



Clause format Interpretation

except type as value: Catch exception and its instance

except (type1, type2): Catch any of the exceptions

except (type1, type2) as value: Catch any of the exceptions and
its instance

else: Run if no exceptions are raised

finally: Always run this block on the way
out

Common variations include the following:

except classname as X:
Catch a class exception, and assign X to the raised in-
stance. X gives access to any attached state information
attributes, print strings, or callable methods on the in-
stance raised. For older string exceptions, X is assigned to
the extra data passed along with the string (string excep-
tions are removed in Python 3.0 and 2.6).

except (type1, type2, type3) as X:
Catch any of the exceptions named in a tuple, and assign
X to the extra data.

See also the sys.exc_info() call in “The sys Mod-
ule” on page 133 for generic access to the exception class and
instance (a.k.a., type and value) after an exception is raised.

Python 2.X try statement forms
In Python 2.X, try statements work as described, but the as
clause used in except handlers to access the raised instance is
coded with a comma instead:

except classname, X:
Catch a class exception, and assign X to the raised
instance.

except (name1, name2, name2), X:
Catch any of the exceptions, and assign X to the extra data.

Specific Statements | 77



The raise Statement
In Python 3.0, the raise statement takes the following forms:

raise instance [from otherexc]
Raise a manually created instance of a class (e.g., raise
Error(args)).

raise class [from otherexc]
Make and raise a new instance of class (equivalent to
raise class()).

raise
Re-raise the most recent exception.

The raise statement triggers exceptions. You can use it to
explicitly raise either built-in exceptions, or user-defined ex-
ceptions. Without arguments, raise re-raises the most recent
exception. See also “Built-in Exceptions” on page 124 for
exceptions raised by Python.

On a raise, control jumps to the matching except clause of the
most recently entered matching try statement, or to the top
level of the process (where it ends the program and prints a
standard error message). The instance object raised is assigned
to the as variable in the matching except clause (if given).

The optional from clause allows exception chaining in Python
3.0 (only): otherexc is another exception class or instance, and
is attached to the raised exception’s __cause__ attribute. If the
raised exception is not caught, Python prints both exceptions
as part of the standard error message.

Class exceptions
In Python 3.0 and 2.6 all exceptions are identified by classes,
which must be derived from the built-in Exception class (in 2.6
this derivation is required of new-style classes only). The
Exception superclass provides default display strings and con-
structor argument retention in tuple attribute args.

78 | Python Pocket Reference



Class exceptions support exception categories, which can be
easily extended. Because try statements catch all subclasses
when they name a superclass, exception categories can be
modified by altering the set of subclasses without breaking
existing try statements. The raised instance object also pro-
vides storage for extra information about the exception:

class General(Exception):
    def __init__(self, x):
        self.data = x

class Specific1(General): pass
class Specific2(General): pass

try:
    raise Specific1('spam')
except General as X:
    print(X.data)             # prints 'spam'

Python 2.X raise statement forms
Prior to Python 2.6, Python 2.X allows exceptions to be iden-
tified with both strings and classes. Because of this, its raise
statements may take the following forms, many of which exist
for backward compatibility:

raise string
Matches an except handler clause that names the raised
string object.

raise string, data
Passes an extra data object with an exception (the default
is None); it is assigned to variable X in an except string,
X: try statement clause.

raise instance
This is the same as raise instance.__class__, instance.

raise class, instance
Matches an except that names this class, or any of its su-
perclasses. Passes the class instance object as extra ex-
ception data, to be assigned to X in an except class, X:.

Specific Statements | 79



raise class
Same as raise class() (makes an instance of class).

raise class, arg
Same as raise class(arg) (makes an instance of class from
non-instance arg).

raise class, (arg [, arg]*)
Same as raise class(arg, arg, ...) (makes an instance
of class).

raise
Re-raises the current exception.

String exceptions were deprecated as of (and issues warnings
in) Python 2.5. Python 2.X also allows a third item in raise
statements, which must be a traceback object used instead of
the current location as the place where the exception occurred.

The assert Statement
assert expression [, message]

The assert statement performs debugging checks. If
expression is false, it raises AssertionError, passing message as
an extra data item if specified. The -O command-line flag re-
moves assertions (their tests are not run).

The with Statement
with expression [as variable]:      # Python 2.6 and 3.0
    suite

with expression [as variable]
        [, expression [as variable]]*:  # 3.1
    suite

The with statement wraps a nested block of code in a context
manager, which ensures that block entry and/or exit actions
are run. This is an alternative to try/finally for objects having
context managers that perform termination actions whether
exceptions are raised or not.

80 | Python Pocket Reference



expression is assumed to return an object that supports the
context management protocol. This object may also return a
value that will be assigned to the name variable if the optional 
as clause is present. Classes may define custom context man-
agers, and some built-in types such as files and threads provide
context managers with exit actions that close files, release
thread locks, etc.:

with open(r'C:\misc\script', 'w') as myfile:
    ...process myfile, auto-closed on statement exit...

See “Files” on page 45 for more details on file context manager
usage, and Python manuals for other built-in types that support
this protocol and statement, as well as details on the protocol
itself.

This statement is supported as of Python 2.6 and 3.0, and may
be enabled in 2.5 with the following:

from __future__ import with_statement

Multiple context managers in Python 3.1
In Python 3.1, this statement may also specify multiple (a.k.a.
nested) context managers. Any number of context manager
items may be separated by commas, and multiple items work
the same as nested with statements. In general, the 3.1 and later
code:

with A() as a, B() as b:
    ...statements...

is equivalent to the following, which works in 3.1, 3.0, and 2.6:

with A() as a:
    with B() as b:
        ...statements...

For example, in the following code both files’ exit actions are
automatically run when the statement block exits, regardless
of exception outcomes:

Specific Statements | 81



with open('data') as fin, open('results', 'w') as fout:
    for line in fin:
        fout.write(transform(line))

Python 2.X Statements
Python 2.X supports the print statement described above, does
not support nonlocal, and does not support with until 2.6. In
addition, raise, try, and def have the slightly different syntaxes
in Python 2.X as noted above.

The following additional statement is available in Python 2.X
only:

exec codestring [in globaldict [, localdict]]

The exec statement compiles and runs code strings.
codestring is any Python statement (or multiple statements
separated by newlines) as a string; it is run in a namespace
containing the exec, or the global/local namespace dictionaries
if specified (localdict defaults to globaldict). codestring can
also be a compiled code object. Also see compile(), eval(),
and the Python 2.X execfile() in “Built-in Func-
tions” on page 102.

In Python 3.0, this statement becomes the exec() function (see
“Built-in Functions” on page 102). The backward- and
forward-compatible syntax exec(a, b, c) is also accepted in
Python 2.

Namespace and Scope Rules
This section discusses rules for name binding and lookup (see
also the sections “Name format” on page 54 and “Name con-
ventions” on page 55). In all cases, names are created when
first assigned but must already exist when referenced. Quali-
fied and unqualified names are resolved differently.

82 | Python Pocket Reference



Qualified Names: Object Namespaces
Qualified names (X, in object.X) are known as attributes and 
live in object namespaces. Assignments in some lexical
scopes4 initialize object namespaces (modules, classes).

Assignment: object.X = value
Creates or alters the attribute name X in the namespace of
the object being qualified.

Reference: object.X
Searches for the attribute name X in the object, then all
accessible classes above it (for instances and classes). This
is the definition of inheritance.

Unqualified Names: Lexical Scopes
Unqualified names (X) involve lexical scope rules. Assignments
bind such names to the local scope unless they are declared
global.

Assignment: X = value
Makes name X local by default: creates or changes name
X in the current local scope. If X is declared global, this
creates or changes name X in the enclosing module’s
scope. If X is declared nonlocal in Python 3.0, this changes
name X in an enclosing function’s scope. Local variables
are stored in the call stack at runtime for quick access.

Reference: X
Looks for name X in at most four scope categories: in the
current local scope (function); then in the local scopes of
all lexically enclosing functions (if any, from inner to
outer); then in the current global scope (module); then in
the built-in scope (which corresponds to module
builtins in Python 3.0, and module __builtin__ in
Python 2.X). Local and global scope contexts are defined
in Table 17. global declarations make the search begin in

4. Lexical scopes refer to physically (syntactically) nested code structures
in a program’s source code.

Namespace and Scope Rules | 83



the global scope instead, and nonlocal declarations re-
strict the search to enclosing functions.

Table 17. Unqualified name scopes

Code context Global scope Local scope

Module Same as local The module itself

Function, method Enclosing module Function call

Class Enclosing module class statement

Script, interactive mode Same as local module __main__

exec(), eval() Caller’s global (or passed in) Caller’s local (or passed in)

Statically Nested Scopes
The enclosing functions search of the last rule in the previous
section (Reference: X) is called a statically nested scope, and
was made standard in version 2.2. For example, the following
function now works because the reference to x within f2 has
access to the scope of f1:

def f1():
    x = 42
    def f2():
        print(x)
    f2()

In Python versions prior to 2.2, this function fails because name
x is not local (in f2’s scope), global (in the module enclosing
f1), or built-in. To make such cases work prior to version 2.2,
default arguments retain values from the immediately enclos-
ing scope (defaults are evaluated before entering a def):

def f1():
    x = 42
    def f2(x=x):
        print(x)
    f2()

This rule also applies to lambda expressions, which imply a
nested scope just like def and are more commonly nested in
practice:

84 | Python Pocket Reference



def func(x):
    action = (lambda n: x ** n)        # works as of 2.2
    return action

def func(x):
    action = (lambda n, x=x: x ** n)   # use before 2.2
    return action

Defaults are still sometimes needed to reference loop variables
when creating functions inside loops (they reflect their final
loop value). Scopes nest arbitrarily, but only enclosing func-
tions (not classes) are searched:

def f1():
    x = 42
    def f2():
        def f3():
            print(x)   # found in f1's scope
        f3()
    f2()

Object-Oriented Programming
Classes are Python’s main object-oriented programming
(OOP) tool. They support multiple instances, attribute inher-
itance, and operator overloading.

Classes and Instances

Class objects provide default behavior
• The class statement creates a class object and assigns it

to a name.

• Assignments inside class statements create class at-
tributes, which are inherited object state and behavior.

• Class methods are nested defs, with special first arguments
to receive the implied subject instance.

Object-Oriented Programming | 85



Instance objects are generated from classes
• Calling a class object like a function makes a new in-

stance object.

• Each instance object inherits class attributes and gets its
own attribute namespace.

• Assignments to attributes of the first argument (e.g.,
self.X = V) in methods create per-instance attributes.

Inheritance rules
• Inheritance happens at attribute qualification time: on

object.attribute, if object is a class or instance.

• Classes inherit attributes from all classes listed in their
class statement header line (superclasses). Listing more
than one means multiple inheritance.

• Instances inherit attributes from the class from which they
are generated, plus all that class’s superclasses.

• Inheritance searches the instance, then its class, then all
accessible superclasses, and uses the first version of an at-
tribute name found. Superclasses are searched depth-first
and then left-to-right (but new-style classes search across
before proceeding up in diamond pattern trees).

Pseudoprivate Attributes
By default, all attribute names in modules and classes are visi-
ble everywhere. Special conventions allow some limited data-
hiding but are mostly designed to prevent name collisions (see
also the section “Name conventions” on page 55).

Module privates
Names in modules with a single underscore (e.g., _X), and those
not listed on the module’s __all__ list, are not copied over
when a client uses from module import *. This is not strict pri-
vacy, though, as such names can still be accessed with other
import statement forms.

86 | Python Pocket Reference



Class privates
Names anywhere within class statements with two leading
underscores only (e.g., __X) are mangled at compile time to
include the enclosing class name as a prefix (e.g., _Class__X).
The added class-name prefix localizes such names to the en-
closing class and thus makes them distinct in both the self
instance object and the class hierarchy.

This helps to avoid clashes that may arise for same-named
methods, and for attributes in the single instance object at the
bottom of the inheritance chain (all assignments to self.attr
anywhere in a framework change the single instance name-
space). This is not strict privacy, though, as such attributes can
still be accessed via the mangled name.

New Style Classes
In Python 3.0, there is a single class model: all classes are con-
sidered new-style whether they derive from object or not. In
Python 2.X, there are two class models: classic (the default),
and new-style in version 2.2 and later (coded by deriving from
a built-in type or object—class A(object)).

New-style classes (and all classes in Python 3.0) differ from 
classic classes in the following ways:

• Diamond patterns of multiple inheritances have a slightly
different search order—roughly, they are searched across
before up, and more breadth-first than depth-first.

• Classes are now types, and types are now classes. The
type(I) built-in returns the class an instance is made from,
instead of a generic instance type, and is normally the
same as I.__class__. The type class may be subclassed to
customize class creation, and all classes inherit from
object.

• The __getattr__ and __getattribute__ methods are no
longer run for attributes implicitly fetched by built-in op-
erations. They are not called for __X__
operator -overloading method names; the search for such

Object-Oriented Programming | 87



names begins at classes, not instances. To intercept and
delegate access to such method names, they generally
must be redefined in wrapper/proxy classes.

• New-style classes have a set of new class tools, including
slots, properties, descriptors, and the __getattribute__
method. Most of these have tool-building purposes.
See the next section “Operator Overloading Methods” for
__slots__, __getattribute__, and descriptor __get__,
__set__, and __delete__ methods; see “Built-in Func-
tions” on page 102 for property().

Operator Overloading Methods
Classes intercept and implement built-in operations by pro-
viding specially named method functions, all of which start
and end with two underscores. These names are not reserved
and can be inherited from superclasses as usual. Python locates
and calls at most one per operation.

Python automatically calls a class’s overloading methods when
instances appear in expressions and other contexts. For exam-
ple, if a class defines a method named __getitem__, and X is an
instance of this class, the expression X[i] is equivalent to the
method call X.__getitem__(i).

Overloading method names are sometimes arbitrary: a class’s
__add__ method need not perform an addition (or concatena-
tion). Moreover, classes generally can mix numeric and col-
lection methods and mutable and immutable operations. Most
operator overloading names have no defaults, and the corre-
sponding operation raises an exception if its method is not
defined.

For All Types
__new__(cls [, args...])

Called to create and return a new instance of class cls.
Receives constructor arguments passed to the class. If this

88 | Python Pocket Reference



returns an instance of the class, the instance’s __init__ 
method is invoked with the same constructor arguments.
Not used in normal classes; intended to allow subclasses
of immutable types to customize instance creation, and to
allow custom metaclasses to customize class creation.

__init__(self [, arg]*)
Invoked on class(args...). This is the constructor that
initializes the new instance, self. When run for calls to a
class name, self is provided automatically; arg is the
arguments passed to the class name, and may be any
function-definition argument form (see “The Expression
Statement” on page 59 and “The def State-
ment” on page 64). Must return no value, and call super-
class __init__ manually if needed, passing the instance to
self.

__del__(self)
Invoked on instance garbage collection. This destructor
method cleans up when an instance is freed. Embedded
objects are automatically freed when the parent is (unless
referenced from elsewhere). Exceptions during this
method’s run are ignored, and simply print messages to
sys.stderr. The try/finally statement allows more pre-
dictable termination actions for a code block.

__repr__(self)
Invoked on repr(self), and interactive echoes, (and
`self` in Python 2.X only). Also invoked on str(self)
and print(self) if there is no __str__. This method re-
turns a low-level “as code” string representation of self.

__str__(self)
Invoked on str(self) and print(self) (or uses __repr__
as a backup if defined). This method returns a high-level
“user friendly” string representation of self.

__format__(self, formatspec)
Called by the format() built-in function (and by exten-
sion, the str.format() method of str strings) to produce
a “formatted” string representation of an object. See

Operator Overloading Methods | 89



“Strings” on page 19 and “Built-in Func-
tions” on page 102. New in Python 2.6 and 3.0.

__hash__(self)
Invoked on dictionary[self] and hash(self), and other
hashed collection operations, including those of the set
object type. This method returns a unique and unchang-
ing integer hash-key.

__bool__(self)
Called for truth value testing and the built-in bool() func-
tion; returns False or True. When __bool__() is not de-
fined, __len__() is called if it is defined and designates a
true value with a nonzero length. If neither __len__() nor
__bool__() is defined, all its instances are considered true.
New in Python 3.0; in Python 2.X, this method is named
__nonzero__ instead of __bool__, but works the same way.

__call__(self [, arg]*)
Invoked on self(args...), when an instance is called like
a function. arg may take any function-definition argument
form (see “The Expression Statement” on page 59 and
“The def Statement” on page 64). For example,
__call__(self, a, b, c, d=5) and __call__(self,
*pargs, **kargs) both match calls self(1, 2, 3, 4) and
self(1, *(2,), c=3, **dict(d=4)).

__getattr__(self, name)
Invoked on self.name, when name is an undefined attribute
access (this method is not called if name exists in or is in-
herited by self). name is a string. This method returns an
object or raises AttributeError.

In Python 3.0, this is no longer run for __X__ attributes
implicitly fetched by built-in operations; redefine such
names in wrapper/proxy classes.

__setattr__(self, name, value)
Invoked on self.name=value (all attribute assignments).
Hint—assign through __dict__ key to avoid recursive
loops: self.attr=x statement within a __setattr__ calls
__setattr__ again, but self.__dict__['attr']=x does

90 | Python Pocket Reference



not. Recursion may also be avoided by calling the super-
class version explicitly: object.__setattr__(self, name,
value).

__delattr__(self, name)
Invoked on del self.name (all attribute deletions). Hint:
must avoid recursive loops by routing attribute deletions
through __dict__ or a superclass, much like __setattr__.

__getattribute__(self, name)
Called unconditionally to implement attribute accesses
for instances of the class. If the class also defines
__getattr__, it will never be called (unless it is called ex-
plicitly). This method should return the (computed) at-
tribute value or raise an AttributeError exception. To
avoid infinite recursion in this method, its implementa-
tion should always call the superclass method with the
same name to access any attributes it needs (e.g.,
object.__getattribute__(self, name).

In Python 3.0, this is no longer run for __X__ attributes
implicitly fetched by built-in operations; redefine such
names in wrapper/proxy classes.

__lt__(self, other)
__le__(self, other)
__eq__(self, other)
__ne__(self, other)
__gt__(self, other)
__ge__(self, other)

Respectively, used on self < other, self <= other, self
== other, self != other, and self > other, self >=
other. Added in version 2.1, these are known as rich com-
parison methods and are called for all comparison expres-
sions in Python 3.0. For example, X < Y calls
X.__lt__(Y) if defined. In Python 2.X only, these methods
are called in preference to __cmp__, and __ne__ is also run
for self <> other.

These methods can return any value, but if the compari-
son operator is used in a Boolean context, the return value
is interpreted as a Boolean result for the operator. These

Operator Overloading Methods | 91



methods can also return (not raise) the special object
NotImplemented if not supported for the operands (which
works as though the method were not defined at all, and
which forces Python 2.X to revert to the general __cmp__
method if defined).

There are no implied relationships among comparison
operators. For example, x==y being true does not imply
that x!=y is false: __ne__ should be defined along with
__eq__ if the operators are expected to behave symmetri-
cally. There are also no right-side (swapped-argument)
versions of these methods to be used when the left argu-
ment does not support the operation but the right argu-
ment does. __lt__ and __gt__ are each other’s reflection,
__le__ and __ge__ are each other’s reflection, and __eq__
and __ne__ are their own reflections. Use __lt__ for sorting
in Python 3.0.

__slots__
This class attribute can be assigned a string, iterable, or
sequence of strings giving the names of attributes of in-
stances of the class. If defined in a new-style class (includ-
ing all classes in Python 3), __slots__ reserves space for
the declared attributes, and prevents the automatic cre-
ation of __dict__ for each instance (unless string
'__dict__' is included in __slots__, in which case instan-
ces also have a __dict__ and attributes not named in
__slots__ may be added dynamically).

To support classes with __slots__, tools that generically
list attributes or access them by string name must use
storage-neutral tools such as the getattr(), setattr(),
and dir(), which apply to both __dict__ and __slots__
attribute storage. Both attribute sources may need to be
queried.

__dir__(self)
Called on dir(self). Returns a list of attribute names.
New in Python 3.0.

92 | Python Pocket Reference



For Collections (Sequences, Mappings)
__len__(self)

Invoked on len(self) and possibly for truth-value tests.
This method returns a collection’s size. For Boolean tests,
Python looks for __bool__ first, then __len__, and then
considers the object true (__bool__ is named
__nonzero__ in Python 2). Zero length means false.

__contains__(self, item)
Invoked on item in self for custom membership tests
(otherwise, membership uses __iter__, if defined, or
__getitem__). This method returns a true or false result.

__iter__(self)
Invoked on iter(self). New in version 2.2, this method
is part of the iteration protocol. It returns an object with
a __next__() method (possibly self). The result object’s
__next__() method is then called repeatedly in all iteration
contexts (e.g., for loops), and should return the
next result or raise StopIteration to terminate the results
progression. See also sections “The for State-
ment” on page 63 and “The yield State-
ment” on page 68. If no __iter__ is defined, iteration falls
back on __getitem__. In Python 2.X, __next__() is named
next().

__next__(self)
Invoked by the next(self) built-in function, and by all
iteration contexts to advance through results. See
__iter__() for usage details. New in Python 3.0; in Python
2.X, this method is named next(), but works the same
way.

__getitem__(self, key)
Invoked on self[key], self[i:j:k], x in self, and for x
in self (and all iteration contexts). This method imple-
ments all indexing-related operations. Iteration contexts
(e.g., in and for) repeatedly index from 0 until
IndexError, unless __iter__ is defined.

Operator Overloading Methods | 93



In Python 3.0, this and the following two methods are also
called for slice operations, in which case key is a slice ob-
ject. Slice objects may be propagated to another slice ex-
pression, and have attributes start, stop, and step, any of
which can be None. See also slice() in “Built-in Func-
tions” on page 102.

__setitem__(self, key, value)
Invoked on self[key]=value, self[i:j:k]=value. This
method is called for assignment to a collection key or in-
dex, or to a sequence’s slice.

__delitem__(self, key)
Invoked on del self[key], del self[i:j:k]. This method
called is for index/key and sequence slice deletion.

__reversed__(self)
Called if defined by the reversed() built-in function to
implement custom reverse iteration. Returns a new itera-
tor object that iterates over all the objects in the container
in reverse order. If no __reversed__ is defined,
reversed() expects and uses sequence protocol (methods
__len__() and __getitem__()).

For Numbers (Binary Operators)
If one of those methods does not support the operation with
the supplied arguments, it should return (not raise) the built-
in NotImplemented object (which works as though the method
were not defined at all).

Basic binary methods
__add__(self, other)

Invoked on self + other for numeric addition or sequence
concatenation.

94 | Python Pocket Reference



__sub__(self, other)
Invoked on self - other.

__mul__(self, other)
Invoked on self * other for numeric multiplication or
sequence repetition.

__truediv__(self, other)
Invoked on self / other for all division (which retains
remainders) in Python 3.0. In Python 2.X only, __div__ is
called for classic division (where integer division
truncates).

__floordiv__(self, other)
Invoked on self // other for truncating (always) division.

__mod__(self, other)
Invoked on self % other.

__divmod__(self, other)
Invoked on divmod(self, other).

__pow__(self, other [, modulo])
Invoked on pow(self, other [, modulo]) and self **
other.

__lshift__(self, other)
Invoked on self << other.

__rshift__(self, other)
Invoked on self >> other.

__and__(self, other)
Invoked on self & other.

__xor__(self, other)
Invoked on self ^ other.

__or__(self, other)
Invoked on self | other.

Operator Overloading Methods | 95



Right-side binary methods
__radd__(self, other)
__rsub__(self, other)
__rmul__(self, other)
__rtruediv__(self, other)
__rfloordiv__(self, other)
__rmod__(self, other)
__rdivmod__(self, other)
__rpow__(self, other)
__rlshift__(self, other)
__rrshift__(self, other)
__rand__(self, other)
__rxor__(self, other)
__ror__(self, other)

These are right-side counterparts to the binary operators
of the prior section. Binary operator methods have a right-
side variant that starts with an r prefix (e.g., __add__ and
__radd__). Right-side variants have the same argument
lists, but self is on the right side of the operator. For in-
stance, self + other calls self.__add__(other), but other
+ self invokes self.__radd__(other).

The r right-side method is called only when the instance
is on the right and the left operand is not an instance of a
class that implements the operation:

instance + noninstance runs __add__
instance + instance runs __add__
noninstance + instance runs __radd__

If two different class instances that overload the operation
appear, the class on the left is preferred. __radd__ often
converts or swaps order and re-adds to trigger __add__.

96 | Python Pocket Reference



Augmented binary methods
__iadd__(self, other)
__isub__(self, other)
__imul__(self, other)
__itruediv__(self, other)
__ifloordiv__(self, other)
__imod__(self, other)
__ipow__(self, other[, modulo])
__ilshift__(self, other)
__irshift__(self, other)
__iand__(self, other)
__ixor__(self, other)
__ior__(self, other)

These are augmented assignment (in-place) methods. Re-
spectively, they are called for the following assignment
statement formats: +=, -=, *=, /=, //=, %=, **=, <<=, >>=, &=,
^=, and |=. These methods should attempt to do the op-
eration in-place (modifying self) and return the result
(which can be self). If a method is not defined, then the
augmented operation falls back on the normal methods.
To evaluate X += Y, where X is an instance of a class that
has an __iadd__, x.__iadd__(y) is called. Otherwise,
__add__ and __radd__ are considered.

For Numbers (Other Operations)
__neg__(self)

Invoked on -self.

__pos__(self)
Invoked on +self.

__abs__(self)
Invoked on abs(self).

__invert__(self)
Invoked on ˜self.

Operator Overloading Methods | 97



__complex__(self)
Invoked on complex(self).

__int__(self)
Invoked on int(self).

__float__(self)
Invoked on float(self).

__round__(self [, n])
Invoked on round(self [, n]). New in Python 3.0.

__index__(self)
Called to implement operator.index(). Also called in
other contexts where Python requires an integer object.
This includes instance appearances as indexes, as slice
bounds, and as arguments to the built-in bin(), hex(), and
oct() functions. Must return an integer.

Similar in Python 3.0 and 2.6, but not called for hex() and
oct() in 2.6 (these require __hex__ and __oct__ methods
in 2.6). In Python 3.0, __index__ subsumes and replaces
the __oct__ and __hex__ methods of Python 2.X, and the
returned integer is formatted automatically.

For Descriptors
The following methods apply only when an instance of a class
defining the method (a descriptor class) is assigned to a class
attribute of another class (known as the owner class). These
methods are invoked for access to the attribute in the owner
class whose name is assigned to the descriptor class instance.

__get__(self, instance, owner)
Called to get the attribute of the owner class or of an in-
stance of that class. owner is always the owner class;
instance is the instance the attribute was accessed
through, or None when the attribute is accessed through
the owner class directly. Return the attribute value or raise
AttributeError.

98 | Python Pocket Reference



__set__(self, instance, value)
Called to set the attribute on an instance of the owner class
to a new value.

__delete__(self, instance)
Called to delete the attribute on an instance of the owner
class.

For Context Managers
The following methods implement the context manager pro-
tocol, used by the with statement (see “The with State-
ment” on page 80).

__enter__(self)
Enter the runtime context related to this object. The
with statement assigns this method’s return value to the
target specified in the as clause of the statement (if any).

__exit__(self, exc_type, exc_value, traceback)
Exit the runtime context related to this object. The pa-
rameters describe the exception that caused the context
to be exited. If the context exited without an exception,
all three arguments are None. Return a true value to prevent
a raised exception from being propagated by the caller.

Python 2.X Operator Overloading Methods

Methods in Python 3.0 only
The following methods are supported in Python 3.0 but not
Python 2.X:

• __bool__ (use method name __nonzero__ in Python 2.X,
or __len__)

• __next__ (use method name next in Python 2.X)

• __truediv__ (available in Python 2.X only if true division
is enabled)

• __dir__

Operator Overloading Methods | 99



• __round__

• __index__ for oct(), hex() (use __oct__, __hex__ in Python
2.X)

Methods in Python 2.X only
The following methods are supported in Python 2.X but not
Python 3.0:

__cmp__(self, other) (and __rcmp__)
Invoked on self > x, x == self, cmp(self, x), etc. This
method is called for all comparisons for which no more
specific method (such as __lt__) is defined or inherited. It
returns −1, 0, or 1 for self less than, equal to, or greater
than other. If no rich comparison or __cmp__ methods are
defined, class instances compare by their identity (address
in memory). The __rcmp__ right-side method is no longer
supported as of version 2.1.

In Python 3.0, use the more specific comparison methods
described earlier: __lt__, __ge__, __eq__, etc. Use __lt__
for sorting in Python 3.0.

__nonzero__(self)
Invoked on truth-value (otherwise, uses __len__ if
defined).

In Python 3.0, this method is renamed __bool__.

__getslice__(self, low, high)
Invoked on self[low:high] for sequence slicing. If no
__getslice__ is found, and for extended three-item slices,
a slice object is created and passed to the __getitem__
method instead.

In Python 2.X, this and the next two methods are consid-
ered deprecated but are still supported—they are called
for slice expressions if defined, in preference to their item-
based counterparts. In Python 3.0, these three methods
are removed entirely—slices always invoke __getitem__,
__setitem__, or __delitem__ instead, with a slice object as

100 | Python Pocket Reference



its argument. See slice() in “Built-in Func-
tions” on page 102.

__setslice__(self, low, high, seq)
Invoked on self[low:high]=seq for sequence slice
assignment.

__delslice__(self, low, high)
Invoked on del self[low:high] for sequence slice
deletion.

__div__(self, other) (and __rdiv__, __idiv__)
Invoked on self / other, unless true division is enable
with from (in which case __truediv__ is used). In Python
3.0, these are always subsumed by __truediv__,
__rtruediv__, and __itruediv__ because / is always true
division.

__long__(self)
Invoked on long(self). In Python 3.0, the int type sub-
sumes the long type completely.

__oct__(self)
Invoked on oct(self). This method returns an octal string
representation. In Python 3.0, return an integer for
__index__() instead.

__hex__(self)
Invoked on hex(self). This method returns a hex string
representation. In Python 3.0, return an integer for
__index__() instead.

__coerce__(self, other)
Invoked on the mixed-mode arithmetic expression,
coerce(). This method returns a tuple of (self, other)
converted to a common type. If __coerce__ is defined, it
is generally called before any real operator methods are
tried (e.g., before __add__). It should return a tuple con-
taining operands converted to a common type (or None if
it can’t convert). See the Python Language Reference (http:
//www.python.org/doc/) for more on coercion rules.

Operator Overloading Methods | 101

http://www.python.org/doc/
http://www.python.org/doc/


__metaclass__
Class attribute assigned to class’s metaclass. In Python
3.0, use metaclass=M keyword argument syntax in the class
header line.

Built-in Functions
All built-in names (functions, exceptions, and so on) exist in
the implied outer built-in scope, which corresponds to the
builtins module (named __builtin__ in Python 2). Because
this scope is always searched last on name lookups, these func-
tions are always available in programs without imports. How-
ever, their names are not reserved words and might be hidden
by assignments to the same name in global or local scopes.

abs(N)
Returns the absolute value of a number N.

all(iterable)
Returns True only if all elements of the iterable are true.

any(iterable)
Returns True only if any element of the iterable is true.

ascii(object)
Like repr(), returns a string containing a printable repre-
sentation of an object, but escapes the non-ASCII charac-
ters in the repr() result string using \x, \u, or \U escapes.
This result is similar to that returned by repr() in Python
2.X.

bin(N)
Convert an integer number to a binary (base 2) digits
string. The result is a valid Python expression. If argument
N is not a Python int object, it must define an
__index__() method that returns an integer. See also
int(x, 2) to convert from binary, 0bNNN binary literals,
and the b type code in str.format().

bool([x])
Converts a value to a Boolean, using the standard truth
testing procedure. If x is false or omitted, this returns

102 | Python Pocket Reference



False; otherwise, it returns True. bool is also a class, which
is a subclass of int. The class bool cannot be subclassed
further. Its only instances are False and True.

bytearray([arg [, encoding [, errors]]])
Returns a new array of bytes. The bytearray type is a mu-
table sequence of small integers in the range 0...255,
which prints as ASCII text when possible. It is essentially
a mutable variant of bytes, which supports most opera-
tions of mutable sequences, as well as most methods of
the str string type. arg may be a str string with encoding
name (and optionally errors) as in str(); an integer size
to initialize an array of NULL bytes; an iterable of small
integers used to initialize the array such as a bytes string
or another bytearray; an object conforming to the
memory-view (previously known as buffer) interface used
to initialize the array; or absent, to create a zero-length
array.

bytes([arg [, encoding [, errors]]])
Returns a new bytes object, which is an immutable
sequence of integers in the range 0...255. bytes is an
immutable version of bytearray. It has the same nonmu-
tating string methods and sequence operations. It is com-
monly used to represent 8-bit byte strings of binary data.
Constructor arguments are interpreted as for bytearray().
bytes objects may also be created with the b'ccc' literal.

chr(I)
Returns a one-character string whose Unicode codepoint
is integer I. This is the inverse of ord() (e.g., chr(97) is
'a' and ord('a') is 97).

classmethod(function)
Returns a class method for a function. A class method re-
ceives the class as an implicit first argument, just like an
instance method receives the instance. Use the
@classmethod function decorator in version 2.4 and later
(see the section “The def Statement” on page 64).

Built-in Functions | 103



compile(string, filename, kind [, flags[, dont_inherit]])
Compiles string into a code object. string is a Python
string containing Python program code. filename is a
string used in error messages (and is usually the name of
the file from which the code was read, or <string> if typed
interactively). kind can be 'exec' if string contains state-
ments; 'eval' if string is an expression; or 'single',
which prints the output of an expression statement that
evaluates to something other than None. The resulting
code object can be executed with exec() or eval() built-
in function calls. The optional last two arguments control
which future statements affect the string’s compilation; if
absent, the string is compiled with the future statements
in effect at the place of the compile() call (see Python
manuals for more details).

complex([real [, imag]])
Builds a complex number object (this can also be done
using the J or j suffix: real+imagJ). imag defaults to 0. If
both arguments are omitted, returns 0j.

delattr(object, name)
Deletes the attribute named name (a string) from object. It
is similar to del obj.name, but name is a string, not a vari-
able (e.g., delattr(a,'b') is like del a.b).

dict([mapping | iterable | keywords])
Returns a new dictionary initialized from a mapping; a
sequence (or other iterable) of key/value pairs; or a set of
keyword arguments. If no argument is given, it returns an
empty dictionary. This is a subclassable type class name.

dir([object])
If no arguments, this returns the list of names in the cur-
rent local scope (namespace). With any object with at-
tributes as an argument, it returns the list of attribute
names associated with that object. It works on modules,
classes, and class instances, as well as built-in objects with
attributes (lists, dictionaries, etc.). Its result includes in-
herited attributes, and is sorted. Use __dict__ attributes

104 | Python Pocket Reference



for simple attribute lists of a single object (and possibly
__slots__ for some classes).

divmod(X, Y)
Returns a tuple of (X / Y, X % Y).

enumerate(iterable, start=0)
Returns an iterable enumerate object. iterable must be a
sequence, an iterator, or some other object that supports
iteration. The __next__() method of the iterator returned
by enumerate() returns a tuple containing a count (from
start, or zero by default) and the corresponding value
obtained from iterating over iterable. This call is useful
for obtaining an indexed series when both positions and
items are required in for loops: (0, seq[0]), (1,
seq[1]), (2, seq[2]).... Available in version 2.3 and later.

eval(expr [, globals [, locals]])
Evaluates expr, which is assumed to be either a Python
string containing a Python expression or a compiled code
object. expr is evaluated in the namespace scopes of the
eval call itself, unless the globals and/or locals name-
space dictionary arguments are passed. locals defaults to
globals if only globals is passed. It returns an expr result.
Also see the compile function discussed earlier in this sec-
tion, and the exec() built-in for dynamically running
statements.

exec(stmts [, globals [, locals]])
Evaluates stmts, which is assumed to be either a Python
string containing Python statements or a compiled code
object. If stmts is a string, the string is parsed as a suite of
Python statements, which is then executed unless a syntax
error occurs. If it is a code object, it is simply executed.
globals and locals work the same as in eval(), and
compile() may be used to precompile to code objects. This
is available as a statement form in Python 2.X (see “Spe-
cific Statements” on page 56).

Built-in Functions | 105



filter(function, iterable)
Returns those elements of iterable for which function
returns true. function takes one parameter. If function is
None, this returns all the true items.

In Python 2.6 this call returns a list. In Python 3.0, it re-
turns an iterable object that generates values on demand
and can be traversed only once (wrap in a list() call to
force results generation if required).

float([X])
Converts a number or a string X to a floating-point number
(or 0.0 if no argument is passed). This is a subclassable
type class name.

format(value [, formatspec])
Converts an object value to a formatted representation, as
controlled by string formatspec. The interpretation of
formatspec depends on the type of the value argument (a
standard formatting syntax is used by most built-in types,
described for the string formatting method earlier in
this book). format(value, formatspec) calls
value.__format__(formatspec), and is a base operation of
the str.format method (e.g., format(1.3333, '.2f') is
equivalent to '{0:.2f}'.format(1.3333)).

frozenset([iterable])
Returns a frozen set object whose elements are taken from
iterable. Frozen sets are immutable sets that have no up-
date methods, and may be nested in other sets.

getattr(object, name [, default])
Returns the value of attribute name (a string) from
object. It is similar to object.name, but name is a string, not
a variable (e.g., getattr(a,'b') is like a.b). If the named
attribute does not exist, default is returned if provided;
otherwise, AttributeError is raised.

globals()
Returns a dictionary containing the caller’s global vari-
ables (e.g., the enclosing module’s names).

106 | Python Pocket Reference



hasattr(object, name)
Returns true if object has an attribute called name (a
string); false otherwise.

hash(object)
Returns the hash value of object (if it has one). Hash val-
ues are integers used to quickly compare dictionary keys
during a dictionary lookup.

help([object])
Invokes the built-in help system. (This function is in-
tended for interactive use.) If no argument is given, an
interactive help session starts in the interpreter console. If
the argument is a string, it is looked up as the name of a
module, function, class, method, keyword, or documen-
tation topic, and its help text is displayed. If the argument
is any other kind of object, help for that object is gener-
ated.

hex(N)
Converts an integer number N to a hexadecimal (base 16)
digits string. If argument N is not a Python int object, it
must define an __index__() method that returns an
integer.

id(object)
Returns the unique identity integer of object (i.e., its ad-
dress in memory).

__import__(name
[, globals [, locals [, fromlist [, level] ]]])

Imports and returns a module, given its name as a string at
runtime (e.g., mod = __import__("mymod")). This call is
generally faster than constructing and executing an
import statement string with exec(). This function is
called by import and from statements internally and can be
overridden to customize import operations. All argu-
ments but the first have advanced roles (see the Python
Library Reference). See also the imp standard library mod-
ule for related tools.

Built-in Functions | 107



input([prompt])
Prints a prompt string if given, then reads a line from the
stdin input stream (sys.stdin) and returns it as a string. It
strips the trailing \n at the end of the line and raises
EOFError at the end of the stdin stream. On platforms
where GNU readline is supported, input() uses it. In
Python 2.X, this function is named raw_input().

int([number | string [, base]])
Converts a number or string to a plain integer. Conversion
of floating-point numbers to integers truncates toward 0.
base can be passed only if the first argument is a string,
and defaults to 10. If base is passed as 0, the base is de-
termined by the string’s contents; otherwise, the value
passed for base is used for the base of the conversion of
the string. base may be 0, and 2...36. The string may be
preceded by a sign and surrounded by whitespace. If no
arguments, returns 0. This is a subclassable type class
name.

isinstance(object, classinfo)
Returns true if object is an instance of classinfo, or an
instance of any subclass thereof. classinfo can also be a
tuple of classes and/or types. In Python 3.0, types are
classes, so there is no special case for types. In Python 2.X,
the second argument can also be a type object, making
this function useful as an alternative type-testing tool
(isinstance(X, Type) versus type(X) is Type).

issubclass(class1, class2)
Returns true if class1 is derived from class2. class2 can
also be a tuple of classes.

iter(object [, sentinel])
Returns an iterator object that can be used to step through
items in object. Iterator objects returned have a
__next__() method that returns the next item or raises
StopIteration to end the progression. All iteration con-
texts in Python use this protocol to advance, if supported
by object. The next(I) built-in function also calls
I.__next__() automatically. If one argument, object is

108 | Python Pocket Reference



assumed to provide its own iterator or be a sequence; if
two arguments, object is a callable that is called until it
returns sentinel. The iter() call can be overloaded in
classes with __iter__.

In Python 2.X, iterable objects have a method named
next() instead of __next__(). For forward compatibility,
the next() built-in function is available in 2.6 and calls
I.next() instead of I.__next__() (prior to 2.6, I.next()
may be called manually instead).

len(object)
Returns the number of items (length) in a collection
object, which may be a sequence or mapping.

list([iterable])
Returns a new list containing all the items in any
iterable object. If iterable is already a list, it returns a
copy of it. If no arguments, returns a new empty list. This
is a subclassable type class name.

locals()
Returns a dictionary containing the local variables of the
caller (with one key:value entry per local).

map(function, iterable [, iterable]*)
Applies function to each item of any sequence or other
iterable iterable, and returns the individual results. For
example, map(abs, (1, −2)) returns 1 and 2. If additional
iterable arguments are passed, function must take that
many arguments, and it is passed one item from each
iterable on every call; iteration stops at the end of the
shortest iterable.

In Python 2.6, this returns a list of the individual call re-
sults. In Python 3.0, it instead returns an iterable object
that generates results on demand and can be traversed
only once (wrap it in a list() call to force results genera-
tion if required). Also in Python 2.X (but not Python 3),
if function is None, map collects all the items into a result
list; if sequences differ in length, all are padded to the

Built-in Functions | 109



length of the longest, with Nones. Similar utility is available
in Python 3.0 in module itertools.

max(iterable [, arg]* [, key])
With a single argument iterable, returns the largest item
of a nonempty iterable (e.g., string, tuple, and list). With
more than one argument, it returns the largest of all the
arguments. The optional keyword-only key argument
specifies a one-argument value transform function like
that used for list.sort() and sorted().

memoryview(object)
Returns a memory view object created from the given ar-
gument. Memory views allow Python code to access the
internal data of an object that supports the protocol
without copying the object. Memory can be interpreted
as simple bytes or more complex data structures. Built-in
objects that support the memory-view protocol include
bytes and bytearray. See Python manuals; memory views
are largely a replacement for the Python 2.X buffer proto-
col and built-in function.

min(iterable [, arg]* [, key])
With a single argument iterable, returns the smallest item
of a nonempty iterable (e.g., string, tuple, list). With more
than one argument, it returns the smallest of all the argu-
ments. The key argument is as in max().

next(iterator [, default])
Retrieves the next item from the iterator by calling its
__next__() method. If the iterator is exhausted,
default is returned if given; otherwise, StopIteration is
raised.

This is available in Python 2.6 for forward compatibility,
but it calls iterator.next() instead of
iterator.__next__(). In Python 2.X prior to 2.6, this call
is missing; use iterator.next() manually instead.

object()
Returns a new featureless object. object is a base for all
new style classes, which includes classes explicitly derived
from object in Python 2.X, and all classes in Python 3.0.

110 | Python Pocket Reference



oct(N)
Converts a number N to an octal (base 8) digits string. If
argument N is not a Python int object, it must define a
__index__() method that returns an integer.

open(…)

open(file [, mode='r' 
   [, buffering=None 
   [, encoding=None        # text mode only 
   [, errors=None          # text mode only 
   [, newline=None         # text mode only 
   [, closefd=True] ]]]]]) # descriptors only

See also Python 2.X open() on page 123. Returns a new file
object connected to the external file named by file, or raises
IOError if the open fails. file is usually a string or bytes object
giving the name (and the path if the file isn’t in the current
working directory) of the file to be opened. file may also be
an integer file descriptor of the file to be wrapped. If a file de-
scriptor is given, it is closed when the returned I/O object is
closed, unless closefd is set to False. All options may be passed
as keyword arguments.

mode is an optional string that specifies the mode in which the
file is opened. It defaults to 'r', which means open for reading
in text mode. Other common values are 'w' for writing (trun-
cating the file if it already exists), and 'a' for appending. In text
mode, if encoding is not specified, the encoding used is plat-
form dependent, and newlines are translated to and from
'\n' by default. For reading and writing raw bytes, use binary
modes 'rb', 'wb', or 'ab', and leave encoding unspecified.

Available modes that may be combined: 'r' for read (default);
'w' for write, truncating the file first; 'a' for write, appending
to the end of the file if it exists; 'b' for binary mode; 't' for
text mode (default); '+' to open a disk file for updating (reading
and writing); 'U' for universal newline mode (for backward
compatibility, not needed for new code). The default 'r' mode
is the same as 'rt' (open for reading text). For binary random
access, the mode 'w+b' opens and truncates the file to 0 bytes,
while 'r+b' opens the file without truncation.

Built-in Functions | 111



Python distinguishes between files opened in binary and text
modes, even when the underlying operating system does not.5

• For input, files opened in binary mode (by appending
'b' to mode) return contents as bytes objects without any
Unicode decoding or line-end translations. In text mode
(the default, or when 't' is appended to mode), the con-
tents of the file are returned as str strings after the bytes
are decoded using either an explicitly passed encoding
name or a platform-dependent default, and line-ends are
translated per newline.

• For output, binary mode expects a bytes or bytearray and
writes it unchanged. Text mode expects a str, and
encodes it per encoding and applies line-end translations
per newline before writing.

buffering is an optional integer used to set buffering policy. By
default, full buffering is on. Pass 0 to switch buffering off (al-
lowed in binary mode only); 1 to set line buffering; and an
integer > 1 for full buffering. Buffered data transfers might not
be immediately fulfilled (use file.flush to force).

encoding is the name of the encoding used to decode or encode
a text file’s content on transfers. This should be used in text
mode only. The default encoding is platform dependent, but
any encoding supported by Python can be passed. See the
codecs module for the list of supported encodings.

errors is an optional string that specifies how encoding errors
are to be handled. This should be used in text mode only. Pass
'strict' to raise a ValueError exception if there is an encoding
error (the default of None has the same effect), or pass
'ignore' to ignore errors. Ignoring encoding errors can lead to

5. In fact, because file mode implies both configuration options and string
data types, it’s probably best to think of open() in terms of two distinct
flavors—text and binary, as specified in the mode string. Python
developers chose to overload a single function to support the two file
types, with mode-specific arguments and differing content types, rather
than provide two separate open functions and file object types.

112 | Python Pocket Reference



data loss. See codecs.register() for a list of the permitted
values.

newline controls how universal newlines work, and applies to
text mode only. It can be None (the default), '', '\n', '\r', and
'\r\n'.

• On input, if newline is None, universal newlines mode is
enabled: lines may end in '\n', '\r', or '\r\n', and all
these are translated to '\n' before being returned to the
caller. If newline is '', universal newline mode is enabled,
but line endings are returned to the caller untranslated. If
it has any of the other legal values, input lines are only
terminated by the given string, and the line ending is re-
turned to the caller untranslated.

• On output, if newline is None, any '\n' characters written
are translated to the system default line separator,
os.linesep. If newline is '', no translation takes place. If
it is any of the other legal values, any '\n' characters writ-
ten are translated to the given string.

If closefd is False, the underlying file descriptor will be kept
open when the file is closed. This does not work when a file
name is given as a string and must be True (the default) in that
case.

ord(C)
Returns an integer codepoint value of a one-character
string C. For ASCII characters, this is the 7-bit ASCII code
of C; for wider Unicode, this is the Unicode code point of
a one-character Unicode string.

pow(X, Y [, Z])
Returns X to power Y [modulo Z]. It is similar to the **
expression operator.

print([object,...]
[, sep=' '] [, end='\n'] [, file=sys.stdout])

Prints object(s) to the stream file, separated by sep and
followed by end. sep, end, and file, if present, must be
given as keyword arguments, and default as shown.

Built-in Functions | 113



All nonkeyword arguments are converted to strings, like
str() does, and written to the stream. Both sep and end
must either be strings, or None (meaning use their default
values). If no object is given, end is written. file must be
an object with a write(string) method, but need not be
an actual file; if it is not passed or is None, sys.stdout will
be used. Print functionality is available as a statement form
in Python 2.X (see “Specific Statements” on page 56).

property([fget[, fset[, fdel[, doc]]]])
Returns a property attribute for new-style classes (classes
that derive from object). fget is a function for getting an
attribute value, fset is a function for setting, and fdel is
a function for deleting. This call may be used as a function
decorator itself, and returns an object with methods
getter, setter, and deleter, which may also be used as
decorators in this role (see “The def State-
ment” on page 64).

range([start,] stop [, step])
Returns successive integers between start and stop. With
one argument, it returns integers from zero through
stop-1. With two arguments, it returns integers from
start through stop-1. With three arguments, it returns
integers from start through stop-1, adding step to each
predecessor in the result. start, step default to 0, 1.
range(0, 20, 2) is a list of even integers from 0 through
18. This call is often used to generate offset lists or repeat
counts in for loops.

In Python 2.6 this call returns a list. In Python 3.0, it re-
turns an iterable object that generates values on demand
and can be traversed multiple times (wrap in a list() call
to force results generation if required).

repr(object)
Returns a string containing a printable and potentially
parseable as-code representation of any object. In Python
2.X (but not Python 3.0) this is equivalent to `object`
(back quotes expression).

114 | Python Pocket Reference



reversed(seq)
Returns a reverse iterator. seq must be an object that has
a __reversed__() method or supports the sequence pro-
tocol (the __len__() method and the __getitem__()
method with integer arguments starting at 0).

round(X [, N])
Returns the floating-point value X rounded to N digits after
the decimal point. N defaults to zero, and may be negative
to denote digits to the left of the decimal point. The return
value is an integer if called with one argument, otherwise
of the same type as X. In Python 2.X only, the result is
always a floating-point. In Python 3.0 only, calls
X.__round__().

set([iterable])
Returns a set whose elements are taken from iterable.
The elements must be immutable. To represent sets of
sets, the nested sets should be frozenset objects. If
iterable is not specified, this returns a new empty set.
Available since version 2.4. See also the section
“Sets” on page 49, and the {...} set literal in Python 3.0.

setattr(object, name, value)
Assigns value to the attribute name (a string) in object. Like
object.name = value, but name is a runtime string, not a
variable name taken literally (e.g., setattr(a,'b',c) is
equivalent to a.b=c).

slice([start ,] stop [, step])
Returns a slice object representing a range, with read-only
attributes start, stop, and step, any of which can be
None. Arguments are the same as for range. Slice objects
may be used in place of i:j:k slice notation (e.g., X[i:j]
is equivalent to X[slice(i, j)]).

sorted(iterable, key=None, reverse=False)
Returns a new sorted list from the items in iterable. The
optional keyword arguments key and reverse have the
same meaning as those for the list.sort() method de-
scribed earlier; key is a one-argument value transform
function. This works on any iterable and returns a new

Built-in Functions | 115



object instead of changing a list in-place, and is thus useful
in for loops to avoid splitting sort calls out to separate
statements due to None returns. Available in version 2.4
and later.

In Python 2.X, this has call signature sorted(iterable,
cmp=None, key=None, reverse=False), where optional ar-
guments cmp, key, and reverse have the same meaning as
those for the Python 2.X list.sort() method described
earlier in this book.

staticmethod(function)
Returns a static method for function. A static method does
not receive an implicit first argument, and so is useful for
processing class attributes that span instances. Use the
@staticmethod function decorator in version 2.4 and later
(see the section “The def Statement” on page 64).

str([object [, encoding [, errors]]])
Returns a “user-friendly” and printable string version of
an object. This is also a subclassable type name. Operates
in one of the following modes:

• When only object is given, this returns its nicely
printable representation. For strings, this is the string
itself. The difference with repr(object) is that
str(object) does not always attempt to return a
string that is acceptable to eval(); its goal is to return
a printable string. With no arguments, this returns
the empty string.

• If encoding and/or errors are passed, this will decode
the object, which can either be a byte string or a char-
acter buffer, using the codec for encoding. The
encoding parameter is a string giving the name of an
encoding; if the encoding is not known, LookupEr
ror is raised. Error handling is done according to
errors; if errors is 'strict' (the default), a ValueEr
ror is raised for encoding errors, while a value of
'ignore' causes errors to be silently ignored, and a
value of 'replace' causes the official Unicode re-
placement character, U+FFFD, to be used to replace

116 | Python Pocket Reference



input characters that cannot be decoded. See also the
codecs module, and the similar bytes.decode()
method (b'a\xe4'.decode('latin-1') is equivalent
to str(b'a\xe4', 'latin-1')).

In Python 2.X, this call has simpler signature
str([object]), and returns a string containing the print-
able representation of object (the first usage mode in
Python 3.0).

sum(iterable [, start])
Sums start and the items of an iterable, from left to right,
and returns the total. start defaults to 0. The iterable’s
items are normally numbers and are not allowed to be
strings (to concatenate an iterable of strings, use
''.join(iterable)).

super([type [, object-or-type]])
Returns the superclass of type. If the second argument is
omitted, the super object returned is unbound. If the
second argument is an object, isinstance(obj, type)
must be true. If the second argument is a type,
issubclass(type2, type) must be true. Calling super()
without arguments is equivalent to super(this_class,
first_arg). In a single-inheritance class hierarchy, this
call can be used to refer to parent classes without naming
them explicitly. This call can also be used to implement
cooperative multiple inheritance in a dynamic execution
environment.

This works only for new-style classes in Python 2.X (where
type is not optional), and for all classes in Python 3.0.

tuple([iterable])
Returns a new tuple with the same elements as any
iterable passed in. If iterable is already a tuple, it is re-
turned directly (not a copy). If no argument, returns a new
empty tuple. This is also a subclassable type class name.

type(object | (name, bases, dict))
This call is used in two different modes, determined by
call pattern:

Built-in Functions | 117



• With one argument, returns a type object represent-
ing the type of object. Useful for type-testing in if
statements (e.g., type(X)==type([])), as well as dic-
tionary keys. See also module types for preset type
objects that are not built-in names, and isin
stance() earlier in this section. Due to the recent
merging of types and classes, type(object) is gener-
ally the same as object.__class__. In Python 2.X, the
types module also includes built-in types.

• With three arguments, serves as a constructor, re-
turning a new type object. This is a dynamic form of
the class statement. The name string is the class name
and becomes the __name__ attribute; the bases tuple
itemizes the base classes and becomes the __bases__
attribute; and the dict dictionary is the namespace
containing definitions for class body and becomes
the __dict__ attribute. class X(object): a = 1 is
equivalent to X = type('X', (object,),
dict(a=1)). This mapping is commonly used for met-
aclass construction.

vars([object])
Without arguments, returns a dictionary containing the
current local scope’s names. With a module, class, or class
instance object as an argument, it returns a dictionary
corresponding to object’s attribute namespace (i.e., its
__dict__). The result should not be modified. Useful for
% string formatting.

zip([iterable [, iterable]*])
Returns a series of tuples, where each ith tuple contains
the ith element from each of the argument iterables. For
example, zip('ab', 'cd') returns ('a', 'c') and ('b',
'd'). At least one iterable is required, or the result is
empty. The result series is truncated to the length of the
shortest argument iterable. With a single iterable argu-
ment, it returns a series of one-tuples. May also be used
to unzip zipped tuples: X, Y = zip(*zip(T1, T2)).

118 | Python Pocket Reference



In Python 2.6, this returns a list. In Python 3.0, it returns
an iterable object that generates values on demand and
can be traversed only once (wrap in a list() call to force
results generation if required). In Python 2.X (but not
Python 3), when there are multiple argument iterables of
the same length, zip is similar to map with a first argument
of None.

Python 2.X Built-in Functions
The prior section’s list applies to Python 3. Semantic differ-
ences between built-ins available in both Python 3.0 and 2.X
are noted in the prior section.

Python 3.0 built-ins not supported by Python 2.6
Python 2.X does not have the following Python 3.0 built-in
functions:

• ascii() (this works like Python 2’s repr())

• exec() (this is a statement form in Python 2.X with similar
semantics)

• memoryview()

• print() (present in Python 2’s __builtin__ module, but 
not directly usable syntactically, as printing is a statement
form and reserved word in Python 2.X)

Python 2.6 built-ins not supported by Python 3.0
Python 2.X has the following additional built-in functions,
some of which are available in different forms in Python 3.0:

apply(func, pargs [, kargs])
Calls any callable object func (a function, method, class,
etc.), passing the positional arguments in tuple pargs, and
the keyword arguments in dictionary kargs. It returns the
func call result.

In Python 3.0, this is removed. Use the argument-unpack-
ing call syntax instead: func(*pargs, **kargs). This form

Built-in Functions | 119



is also preferred in Python 2.6 as it is more general and
symmetric with function definitions.

basestring()
The baseclass for normal and Unicode strings (useful for
isinstance tests).

In Python 3.0, the single str type represents all text (wide
Unicode and other).

buffer(object [, offset [, size]])
Returns a new buffer object for a conforming object (see
the Python Library Reference).

This call is removed in Python 3.0. The new
memoryview() built-in provides similar functionality.

callable(object)
Returns 1 if object is callable; otherwise, returns 0.

This call is removed in Python 3.0. Use hasattr(f,
'__call__') instead.

cmp(X, Y)
Returns a negative integer, zero, or a positive integer to
designate X < Y, X == Y, or X > Y, respectively.

In Python 3.0, this is removed, but may be simulated as:
(X > Y) - (X < Y). However, most common cmp() use
cases (comparison functions in sorts, and the __cmp__
method of classes) have also been removed in Python 3.0.

coerce(X, Y)
Returns a tuple containing the two numeric arguments X
and Y converted to a common type.

This call is removed in Python 3.0 (its main use case was
for Python 2.X classic classes).

execfile(filename [, globals [, locals]])
Like eval, but runs all the code in a file whose string name
is passed in as filename (instead of an expression). Unlike
imports, this does not create a new module object for the
file. It returns None. Namespaces for code in filename are
as for eval.

120 | Python Pocket Reference



In Python 3.0, this may be simulated as:
exec(open(filename).read()).

file(filename [, mode[, bufsize]])
An alias for the open() built-in function, and the subclass-
able class name of the built-in file type.

In Python 3.0, the name file is removed: use open() to
create file objects, and io module classes to customize file
operation.

input([prompt]) (original form)
Prints prompt, if given. Then it reads an input line from the
stdin stream (sys.stdin), evaluates it as Python code, and
returns the result. It is like eval(raw_input(prompt)).

In Python 3.0, because raw_input() was renamed
input(), the original Python 2.X input() is no longer avail-
able, but may be simulated as: eval(input{prompt)).

intern(string)
Enters string in the table of “interned strings” and returns
the interned string. Interned strings are “immortals” and
serve as a performance optimization (they can be com-
pared by fast is identity, rather than == equality).

In Python 3.0, this call has been moved to sys.intern().
Import module sys to use it.

long(X [, base])
Converts a number or a string X to a long integer. base can
be passed only if X is a string. If 0, the base is determined
by the string contents; otherwise, it is used for the base of
the conversion. It is a subclassable type class name.

In Python 3.0, the int integer type supports arbitrarily
long precision, and so subsumes Python 2’s long type. Use
int() in Python 3.0.

raw_input([prompt])
This is the Python 2.X name of the Python 3.0 input()
function described in the prior section.

In Python 3.0, use the input() built-in.

Built-in Functions | 121



reduce(func, iterable [, init])
Applies the two-argument function func to successive
items from iterable, so as to reduce the collection to a
single value. If init is given, it is prepended to iterable.

In Python 3.0, this built-in is still available, as
functools.reduce(). Import module functools to use it.

reload(module)
Reloads, re-parses, and re-executes an already imported
module in the module’s current namespace. Re-execution
replaces prior values of the module’s attributes in-place.
module must reference an existing module object; it is not
a new name or a string. This is useful in interactive mode
if you want to reload a module after fixing it, without re-
starting Python. It returns the module object.

In Python 3.0, this built-in is still available as
imp.reload(). Import module imp to use it.

unichr(i)
Returns the Unicode string of one character whose Uni-
code code is the integer i (e.g., unichr(97) returns the
string u'a'). This is the inverse of ord for Unicode strings,
and the Unicode version of chr(). The argument must be
in range 0...65535 inclusive, or ValueError is raised.

In Python 3.0, normal strings represent Unicode charac-
ters: use the chr() call instead (e.g., ord('\xe4') is 228,
and chr(228) and chr(0xe4) both return 'ä').

unicode(string [, encoding [, errors]])
Decodes string using the codec for encoding. Error han-
dling is done according to errors. The default behavior is
to decode UTF-8 in strict mode, meaning that encoding
errors raise ValueError. See also the codecs module in the
Python Library Reference.

In Python 3.0, there is no separate type for Unicode—the
str type represents all text (wide Unicode and other), and
the bytes type represents 8-bit byte binary data. Use nor-
mal str strings for Unicode text; bytes.decode() or
str() to decode from raw bytes to Unicode according to

122 | Python Pocket Reference



an encoding; and normal file objects to process Unicode
text files.

xrange([start,] stop [, step])
Like range, but doesn’t actually store the entire list all at
once (rather, it generates one integer at a time). This is
useful in for loops when there is a big range and little
memory. It optimizes space, but generally has no speed
benefit.

In Python 3.0, the original range() function is changed to
return an iterable instead of producing a result list in
memory, and thus subsumes Python 2’s xrange(). Use
range() in Python 3.0.

In addition, the file open call has changed radically enough in
Python 3.0 that individual mention of Python 2’s variant is
warranted (in Python 2.X, codecs.open has many of the features
in Python 3’s open):

open(filename [, mode, [bufsize]])
Returns a new file object connected to the external file
named filename (a string), or raises IOError if the open
fails. The file name is mapped to the current working di-
rectory, unless it includes a directory path prefix. The first
two arguments are generally the same as those for C’s
fopen function, and the file is managed by the stdio sys-
tem. With open(), file data is always represented as a nor-
mal str string in your script, containing bytes from the file
(codecs.open() interprets file content as encoded Unicode
text, represented as unicode objects).

mode defaults to 'r' if omitted, but can be 'r' for input;
'w' for output (truncating the file first); 'a' for append;
and 'rb', 'wb', or 'ab' for binary files (to suppress line-
end conversions to and from \n). On most systems, most
of these can also have a + appended to open in input/out-
put updates mode (e.g., 'r+' to read/write, and 'w+' to
read/write but initialize the file to empty).

bufsize defaults to an implementation-dependent value,
but can be 0 for unbuffered, 1 for line-buffered, negative

Built-in Functions | 123



for system-default, or a given specific size. Buffered data
transfers might not be immediately fulfilled (use file
flush methods to force).

Built-in Exceptions
This section describes the exceptions that Python might raise
during a program’s execution. Beginning with Python 1.5, all
built-in exceptions are class objects (prior to 1.5 they were
strings). Built-in exceptions are provided in the built-in scope
namespace. Many built-in exceptions have associated state in-
formation that provides exception details.

Superclasses (Categories)
The following exceptions are used only as superclasses for
other exceptions.

BaseException
The root superclass for all built-in exceptions. It is not
meant to be directly inherited by user-defined classes; use
Exception for this role instead. If str() is called on an in-
stance of this class, the representation of the constructor
argument(s) passed when creating the instance are re-
turned (or the empty string if there were no such argu-
ments). These instance constructor arguments are stored
and made available in the instance’s args attribute as a
tuple. Subclasses inherit this protocol.

Exception
The root superclass for all built-in and non-system-exiting
exceptions. This is a direct subclass of BaseException.

User-defined exceptions should inherit (be derived) from
this class. This derivation is required for user-defined ex-
ceptions in Python 3.0; Python 2.6 requires this of new-
style classes, but also allows standalone exception classes.

124 | Python Pocket Reference



try statements that catch this exception will catch all but
system exit events, because this class is superclass to all
exceptions but SystemExit, KeyboardInterrupt, and
GeneratorExit (these three derive directly from
BaseException instead).

ArithmeticError
Arithmetic error exceptions category: the
superclass of OverflowError, ZeroDivisionError, and
FloatingPointError, and a subclass of Exception.

LookupError
Sequence and mapping index errors: the superclass for
IndexError and KeyError, and a subclass of Exception.

EnvironmentError
The category for exceptions that occur outside Python:
the superclass for IOError and OSError, and a subclass of
Exception. The raised instance includes informational at-
tributes errno and strerror (and possible filename for ex-
ceptions involving file paths), which are also in args.

Specific Exceptions Raised
The following classes are exceptions that are actually raised. In
addition, NameError, RuntimeError, SyntaxError, ValueError,
and Warning are specific exceptions and superclasses to other
built-in exceptions.

AssertionError
Raised when an assert statement’s test is false.

AttributeError
Raised on attribute reference or assignment failure.

EOFError
Raised when the immediate end-of-file is hit by input()
(or raw_input() in Python 2). File read methods return an
empty object at end of file instead.

FloatingPointError
Raised on floating-point operation failure.

Built-in Exceptions | 125



GeneratorExit
Raised when a generator’s close() method is called. This
directly inherits from BaseException instead of Exception
since it is not an error.

IOError
Raised on I/O or file-related operation failures. Derived
from EnvironmentError with state information described
above.

ImportError
Raised when an import or from fails to find a module or
attribute.

IndentationError
Raised when improper indentation is found in source
code. Derived from SyntaxError.

IndexError
Raised on out-of-range sequence offsets (fetch or assign).
Slice indexes are silently adjusted to fall in the allowed
range; if an index is not an integer, TypeError is raised.

KeyError
Raised on references to nonexistent mapping keys (fetch).
Assignment to a nonexistent key creates that key.

KeyboardInterrupt
Raised on user entry of the interrupt key (normally Ctrl-
C or Delete). During execution, a check for interrupts is
made regularly. This exception inherits directly from
BaseException to prevent it from being accidentally caught
by code that catches Exception and thus prevents inter-
preter exit.

MemoryError
Raised on recoverable memory exhaustion. This causes a
stack-trace to be displayed if a runaway program was its
cause.

NameError
Raised on failures to find a local or global unqualified
name.

126 | Python Pocket Reference



NotImplementedError
Raised on failures to define expected protocols. Abstract
class methods may raise this when they require a method
to be redefined. Derived from RuntimeError. (This is not
to be confused with NotImplemented, a special built-in ob-
ject returned by some operator-overloading methods
when operand types are not supported.)

OSError
Raised on os module errors (its os.error exception). De-
rived from EnvironmentError with state information
described earlier.

OverflowError
Raised on excessively large arithmetic operations. This
cannot occur for integers as they support arbitrary preci-
sion, and most floating-point operations are not checked
either.

ReferenceError
Raised in conjunction with weak references. See the
weakref module.

RuntimeError
A rarely used catch-all exception.

StopIteration
Raised on the end of values progression in iterator objects.
Raised by the next(X) built-in and X.__next__() methods
(X.next() in Python 2).

SyntaxError
Raised when parsers encounter a syntax error. This may
occur during import operations, calls to eval() and
exec(), and when reading code in a top-level script file or
standard input. Instances of this class have attributes
filename, lineno, offset, and text for access to details;
str() of the exception instance returns only the message.

SystemError
Raised on interpreter internal errors that are not serious
enough to shut down (these should be reported).

Built-in Exceptions | 127



SystemExit
Raised on a call to sys.exit(N). If not handled, the Python
interpreter exits, and no stack traceback is printed. If the
passed value is an integer, it specifies the system exit status
(passed on to C’s exit function); if it is None, the exit status
is zero; if it has another type, the object’s value is printed
and the exit status is one. Derived directly from
BaseException to prevent it from being accidentally caught
by code that catches Exception and thus prevents inter-
preter exit.

sys.exit() raises this exception so that clean-up handlers
(finally clauses of try statements) are executed, and so
that a debugger can execute a script without losing con-
trol. The os._exit() function exits immediately when
needed (e.g., in the child process after a call to fork()).
Also see the atexit standard library module for exit func-
tion specification.

TabError
Raised when an improper mixture of spaces and tabs is
found in source code. Derived from IndentationError.

TypeError
Raised when an operation or function is applied to an ob-
ject of inappropriate type.

UnboundLocalError
Raised on references to local names that have not yet been
assigned a value. Derived from NameError.

UnicodeError
Raised on Unicode-related encoding or decoding errors;
a superclass category, and a subclass of ValueError.

UnicodeEncodeError
UnicodeDecodeError
UnicodeTranslateError

Raised on Unicode-related processing errors; subclasses
of UnicodeError.

128 | Python Pocket Reference



ValueError
Raised when a built-in operation or function receives an
argument that has the correct type but an inappropriate
value, and the situation is not described by a more specific
exception like IndexError.

WindowsError
Raised on Windows-specific errors; a subclass of OSError.

ZeroDivisionError
Raised on division or modulus operations with 0 on the
right.

Warning Category Exceptions
The following exceptions are used as warning categories:

Warning
The superclass for all of the following warning categories;
it is a direct subclass of Exception.

UserWarning
Warnings generated by user code.

DeprecationWarning
Warnings about deprecated features.

PendingDeprecationWarning
Warnings about features that will be deprecated in the
future.

SyntaxWarning
Warnings about dubious syntax.

RuntimeWarning
Warnings about dubious runtime behavior.

FutureWarning
Warnings about constructs that will change semantically
in the future.

ImportWarning
Warnings about probable mistakes in module imports.

Built-in Exceptions | 129



UnicodeWarning
Warnings related to Unicode.

BytesWarning
Warnings related to bytes and buffer (memory-view)
objects.

Warnings Framework
Warnings are issued when future language changes might
break existing code in a future Python release—and in other
contexts. Warnings may be configured to print messages, raise
exceptions, or be ignored. The warnings framework can be
used to issue warnings by calling the warnings.warn function:

warnings.warn("feature obsolete", DeprecationWarning)

In addition, you can add filters to disable certain warnings. You
can apply a regular expression pattern to a message or module
name to suppress warnings with varying degrees of generality.
For example, you can suppress a warning about the use of the
deprecated regex module by calling:

import warnings
warnings.filterwarnings(action = 'ignore',
                        message='.*regex module*',
                        category=DeprecationWarning,
                        module = '__main__')

This adds a filter that affects only warnings of the class
DeprecationWarning triggered in the __main__ module, applies
a regular expression to match only the message that names the
regex module being deprecated, and causes such warnings to
be ignored. Warnings can also be printed only once, printed
every time the offending code is executed, or turned into ex-
ceptions that will cause the program to stop (unless the excep-
tions are caught). See the warnings module documentation in
version 2.1 and later for more information. See also the -W ar-
gument in the section “Command-Line Options” on page 4.

130 | Python Pocket Reference



Python 2.X Built-in Exceptions
The set of available exceptions, as well as the shape of the ex-
ception class hierarchy, varies slightly in Python 2.6 from the
3.0 description of the prior section. For example, in Python
2.X:

• Exception is the topmost root class (not BaseException,
which is absent in Python 2).

• StandardError is an additional Exception subclass, and is
a root class above all built-in exceptions except
SystemExit.

See Python 2.6 manuals for full details.

Built-in Attributes
Some objects export special attributes that are predefined by
Python. The following is a partial list because many types have
unique attributes all their own; see the entries for specific types
in the Python Library Reference.6

X.__dict__
Dictionary used to store object X’s writable attributes.

I.__class__
Class object from which instance I was generated. In ver-
sion 2.2 and later, this also applies to object types; most
objects have a __class__ attribute (e.g., [].__class__ ==
list == type([])).

C.__bases__
Tuple of class C’s base classes, as listed in C’s class state-
ment header.

6. As of Python 2.1, you can also attach arbitrary user-defined attributes
to function objects, simply by assigning them values. Python 2.X also
supports special attributes I.__methods__ and I.__members__: lists of
method and data member names for instances of some built-in types.
These are removed in Python 3; use the built-in dir() function.

Built-in Attributes | 131



X.__name__
Object X’s name as a string; for classes, the name in the
statement header; for modules, the name as used in im-
ports, or "__main__" for the module at the top level of a
program (e.g., the main file run to launch a program).

Standard Library Modules
Standard library modules are always available but must be im-
ported to be used in client modules. To access them, use one
of these formats:

• import module, and fetch attribute names (module.name)

• from module import name, and use module names unqua-
lified (name)

• from module import *, and use module names unqualified
(name)

For instance, to use name argv in the sys module, either use
import sys and name sys.argv, or use from sys import argv
and name argv.

There are many standard library modules; the following sec-
tions are not necessarily exhaustive, and aim to document only
commonly used names in commonly used modules. See
Python’s Library Reference for a more complete reference to
standard library modules.

In all of the following module sections:

• Listed export names followed by parentheses are func-
tions that must be called; others are simple attributes (i.e.,
variable names in modules).

• Module contents document the modules’ state Python
3.0; see Python manuals for information on attributes
unique to version 2 or 3.

132 | Python Pocket Reference



The sys Module
The sys module contains interpreter-related exports. It also
provides access to some environment components, such as the
command line, standard streams, and so on.

argv
Command-line argument strings list: [command,
arguments...]. Like C’s argv array.

byteorder
Indicates the native byte-order (e.g., big for big-endian).

builtin_module_names
Tuple of string names of C modules compiled into this
Python interpreter.

copyright
String containing the Python interpreter copyright.

dllhandle
Python DLL integer handle; Windows only (see the
Python Library Reference).

displayhook(value)
Called by Python to display result values in interactive
sessions; assign sys.displayhook to a one-argument func-
tion to customize output.

excepthook(type, value, traceback)
Called by Python to display uncaught exception details to
stderr; assign sys.excepthook to a three-argument func-
tion to customize exception displays.

exc_info()
Returns tuple of three values describing the exception
currently being handled (type, value, traceback), where
type is the exception class, value is the instance of the
exception class raised, and traceback is an object that
gives access to the runtime call stack as it existed when the
exception occurred. Specific to current thread. Subsumes
exc_type, exc_value, and exc_traceback in Python 1.5 and
later (all three of which are removed completely in Python

The sys Module | 133



3.0). See the traceback module in the Python Library Ref-
erence for processing traceback objects, and “The try
Statement” on page 75 for more on exceptions.

exec_prefix
Assign to a string giving the site-specific directory prefix
where the platform-dependent Python files are installed;
defaults to /usr/local or a build-time argument. Use this to
locate shared library modules (in <exec_prefix>/lib/
python<version>/lib-dynload) and configuration files.

executable
String giving the full file pathname of the Python inter-
preter program running the caller.

exit([N])
Exits from a Python process with status N (default 0) by
raising a SystemExit built-in exception (can be caught in
a try statement and ignored). See also SystemExit (in
“Built-in Exceptions” on page 124) and the os._exit()
function (in “The os System Module” on page 141),
which exits immediately without exception processing
(useful in child processes after an os.fork()). Also see the
atexit module for exit function specification.

getcheckinterval()
Returns the interpreter’s “check interval”; see
setcheckinterval, later in this list.

getdefaultencoding()
Returns the name of the current default string encoding
used by the Unicode implementation.

getfilesystemencoding()
Returns the name of the encoding used to convert Unicode
filenames into system file names, or None if the system de-
fault encoding is used.

getrefcount(object)
Returns object’s current reference count value (+1 for the
call’s argument).

134 | Python Pocket Reference



getrecursionlimit()
Returns the maximum depth limit of the Python call stack;
see also setrecursionlimit, later in this list.

getsizeof(object [, default])
Returns the size of an object in bytes. The object can be
any type of object. All built-in objects return correct re-
sults, but third-party extension results are implementa-
tion specific. default provides a value that will be returned
if the object type does not implement the size retrieval
interface.

_getframe([depth])
Returns a frame object from the Python call stack (see the
Python Library Reference).

hexversion
Python version number, encoded as a single integer
(viewed best with the hex() built-in function). Increases
with each new release.

intern(string)
Enters string in the table of “interned” strings and returns
the interned string—the string itself or a copy. Interning
strings provides a small performance improvement for
dictionary lookup: if both the keys in a dictionary and the
lookup key are interned, key comparisons (after hashing)
can be done by comparing pointers instead of strings.
Normally, names used in Python programs are automat-
ically interned, and the dictionaries used to hold module,
class, and instance attributes have interned keys.

last_type
last_value
last_traceback

Type, value, and traceback objects of last uncaught ex-
ception (mostly for postmortem debugging).

maxsize
An integer giving the maximum value a variable of type
Py_ssize_t can take. It’s usually 2**31 − 1 on a 32-bit
platform and 2**63 − 1 on a 64-bit platform.

The sys Module | 135



maxunicode
An integer giving the largest supported code point for a
Unicode character. The value of this depends on the con-
figuration option that specifies whether Unicode charac-
ters are stored as UCS-2 or UCS-4.

modules
Dictionary of modules that are already loaded; there is one
name:object entry per module. Writable (for example,
del sys.modules['name'] forces a module to be reloaded
on next import).

path
List of strings specifying module import search path. Ini-
tialized from PYTHONPATH shell variable, .pth path files, and
any installation-dependent defaults. Writable (e.g.,
sys.path.append('C:\\dir') adds a directory to the
search path within a script).

The first item, path[0], is the directory containing the
script that was used to invoke the Python interpreter. If
the script directory is not available (e.g., if the interpreter
is invoked interactively or if the script is read from stan-
dard input), path[0] is the empty string, which directs
Python to search modules in the current working directory
first. The script directory is inserted before the entries in-
serted from PYTHONPATH.

platform
String identifying the system on which Python is running:
e.g., 'sunos5', 'darwin', 'linux2', 'win32', 'cygwin',
'PalmOS3'. Useful for tests in platform-dependent
code. Hint: 'win32' means all current flavors of
Windows, or test as sys.platform[:3]=='win' or
sys.platform.startswith('win').

prefix
Assign to a string giving the site-specific directory prefix,
where platform-independent Python files are installed;
defaults to /usr/local or a build-time argument. Python li-
brary modules are installed in the directory <prefix>/lib/

136 | Python Pocket Reference



python<version>; platform-independent header files are
stored in <prefix>/include/python<version>.

ps1
String specifying primary prompt in interactive mode; de-
faults to >>> unless assigned.

ps2
String specifying secondary prompt for compound state-
ment continuations, in interactive mode; defaults to ...
unless assigned.

dont_write_bytecode
If this is true, Python won’t try to write “.pyc” or “.pyo”
files on the import of source modules (see also “-B”
command-line option).

setcheckinterval(reps)
Call to set how often the interpreter checks for periodic
tasks (e.g., thread switches, signal handlers) to reps.
Measured in virtual machine instructions (default is 100).
In general, a Python statement translates to multiple vir-
tual machine instructions. Lower values maximize thread
responsiveness but also maximize thread switch
overhead.

setdefaultencoding(name)
Call to set the current default string encoding used by the
Unicode implementation. Intended for use by the site
module and is available during start-up only.

setprofile(func)
Call to set the system profile function to func: the profiler’s
“hook” (not run for each line). See the Python Library
Reference for details.

setrecursionlimit(depth)
Call to set maximum depth of the Python call stack to
depth. This limit prevents infinite recursion from causing
an overflow of the C stack and crashing Python. The de-
fault is 1,000 on Windows, but this may vary.

The sys Module | 137



settrace(func)
Call to set the system trace function to func: the program
location or state change callback “hook” used by debug-
gers, etc. See the Python Library Reference for details.

stdin
Standard input stream: a preopened file object. Can be
assigned to any object with read methods to reset input
within a script (e.g., sys.stdin=MyObj()). Used for inter-
preter input, including the input() built-in function (and
raw_input() in Python 2).

stdout
Standard output stream: a preopened file object. Can be
assigned to any object with write methods to reset output
within a script (e.g., sys.stdout=open('log', 'a')). Used
for some prompts and the print() built-in function (and
print statement in Python 2).

stderr
Standard error stream: a preopened file object. Can be as-
signed to any object with write methods to reset stderr
within a script (e.g., sys.stderr=wrappedsocket). Used for
interpreter prompts/errors.

__stdin__
__stdout__
__stderr__

Original values of stdin, stderr, and stdout at program
start (e.g., for restores as a last resort; normally, when as-
signing to sys.stdout, etc., save the old value and restore
it in a finally clause). Can be None for GUI apps on Win-
dows with no console.

tracebacklimit
Maximum number of traceback levels to print on un-
caught exceptions; defaults to 1,000 unless assigned.

version
String containing the version number of the Python
interpreter.

138 | Python Pocket Reference



version_info
Tuple containing five version identification components:
major, minor, micro, release level, and serial. For Python
3.0.1, this is (3, 0, 1, 'final', 0) (see the Python Li-
brary Reference).

winver
Version number used to form registry keys on Windows
platforms (available only on Windows; see the Python Li-
brary Reference).

The string Module
The string module defines constants and variables for
processing string objects. See also the section
“Strings” on page 19 for a discussion of the string template
substitution and formatting tools Template and Formatter de-
fined in this module.

Module Functions and Classes
As of Python 2.0, most functions in this module are also avail-
able as methods of string objects, and method-based calls
are preferred and are more efficient. See the section
“Strings” on page 19 for more details and a list of all available
string methods not repeated here. Only items unique to the
string module are listed in this section.

capwords(s)
Split the argument into words using split, capitalize each
word using capitalize, and join the capitalized words us-
ing join. Replaces runs of whitespace characters by a sin-
gle space, and removes leading and trailing whitespace.

maketrans(from, to)
Returns a translation table suitable for passing to
bytes.translate, that will map each character in from into
the character at the same position in to; from and to must
have the same length.

The string Module | 139



Formatter
Class that allows creation of custom formatters using the
same mechanism as the str.format() method described
in section “Strings” on page 19.

Template
String template substitution class (see the section
“Strings” on page 19).

Constants
ascii_letters

The string ascii_lowercase + ascii_uppercase.

ascii_lowercase
The string 'abcdefghijklmnopqrstuvwxyz'; not
locale-dependent and will not change.

ascii_uppercase
The string 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'; not
locale-dependent and will not change.

digits
The string '0123456789'.

hexdigits
The string '0123456789abcdefABCDEF'.

octdigits
The string '01234567'.

printable
Combination of digits, ascii_letters, punctuation, and
whitespace.

punctuation
String of characters that are considered punctuation char-
acters in the locale.

whitespace
String containing space, tab, linefeed, return, formfeed,
and vertical tab: ' \t\n\r\v\f'.

140 | Python Pocket Reference



The os System Module
The os module is the primary operating system (OS) services
interface. It provides generic OS support and a standard,
platform-independent OS interface. The os module includes
tools for environments, processes, files, shell commands, and
much more. It also includes a nested submodule, os.path,
which provides a portable interface to directory processing
tools.

Scripts that use os and os.path for systems programming are
generally portable across most Python platforms. However,
some os exports are not available on all platforms (e.g., fork is
available on Unix and Cygwin, but not in the standard Win-
dows version of Python). Because the portability of such calls
can change over time, consult the Python Library Reference for
platform details.

See also related system modules: glob (filename expansion);
tempfile (temporary files); signal (signal handling); socket
(networking and IPC); threading (multithreading); queue
(thread communication); subprocess (spawned command con-
trol); multiprocessing (threading-like API for processes);
getopt and optparse (command-line processing); and others.

Administrative Tools
Following are some miscellaneous module-related exports:

error
An alias for the built-in OSError exception. Raised for os
module-related errors. The accompanying value is a pair
containing the numeric error code from errno and the
corresponding string, as would be printed by the C func-
tion perror(). See the module errno in the Python Library
Reference for names of the error codes defined by the un-
derlying OS.

When exceptions are classes, this exception carries two
attributes: errno, the value of the C errno variable;

The os System Module | 141



and strerror, the corresponding error message from
strerror(). For exceptions that involve a file pathname
(e.g., chdir(), unlink()), the exception instance also con-
tains the attribute filename, the filename passed in.

name
Name of OS-specific modules whose names are copied to
the top level of os (e.g., posix, nt, mac, os2, ce, or java).
See also platform in the section “The sys Mod-
ule” on page 133.

path
Nested module for portable pathname-based utilities. For
example, os.path.split is a platform-independent direc-
tory name tool that internally uses an appropriate
platform-specific call.

Portability Constants
This section describes tools for parsing and building directory
and search path strings portably. They are automatically set to
the appropriate value for the platform on which a script is
running.

curdir
String used to represent current directory (e.g., . for Win-
dows and POSIX, : for Macintosh).

pardir
String used to represent parent directory (e.g., .. for
POSIX, :: for Macintosh).

sep
String used to separate directories (e.g., / for Unix, \ for
Windows, or : for Macintosh).

altsep
Alternative separator string or None (e.g., / for Windows).

extsep
The character that separates the base filename from the
extension (e.g., .).

142 | Python Pocket Reference



pathsep
Character used to separate search path components, as in
the PATH and PYTHONPATH shell variable settings (e.g., ; for
Windows, : for Unix).

defpath
Default search path used by os.exec*p* calls if there is no
PATH setting in the shell.

linesep
String used to terminate lines on current platform (e.g.,
\n for POSIX, \r for Mac OS, and \r\n for Windows). Do
not use this when writing lines in text mode files—use the
autotranslation of '\n'.

Shell Commands
These functions run programs in the underlying operating sys-
tem. In Python 2.X, this module has os.popen2/3/4 calls, which
have been replaced by subprocess.Popen in Python 3.0.

system(cmd)
Executes a command string cmd in a subshell process. Re-
turns the exit status of the spawned process. Unlike
popen, does not connect to cmd’s standard streams via
pipes. Hints: add an & at the end of cmd to run the
command in the background on Unix (e.g.,
os.system('python main.py &')); use a DOS start com-
mand to launch programs easily on Windows (e.g.,
os.system('start file.html')).

startfile(filepathname)
Starts a file with its associated application. Acts like
double-clicking the file in Windows Explorer or giving the
filename as an argument to a DOS start command (e.g.,
with os.system('start path')). The file is opened in the
application with which its extension is associated; the call
does not wait, and does not generally pop up a DOS con-
sole window. Windows only, new in version 2.0.

The os System Module | 143



popen(cmd, mode='r', buffering=None)
Opens a pipe to or from the shell command string cmd, to
send or capture data. Returns an open file object, which
can be used to either read from cmd’s standard output
stream stdout (mode 'r') or write to cmd’s standard input
stream stdin (mode 'w'). For example, dirlist =
os.popen('ls −l *.py').read() reads the output of a Unix
ls command.

cmd is any command string you can type at your system’s
console or shell prompt. mode can be 'r' or 'w' and de-
faults to 'r'. buffering is the same as in the built-in open
function. cmd runs independently; its exit status is re-
turned by the resulting file object’s close method, except
that None is returned if exit status is 0 (no errors). Use
readline() or iteration to read output line by line.

Python 2.X also has variants popen2, popen3, and popen4 to
connect to other streams of the spawned command (e.g.,
popen2 returns a tuple (child_stdin, child_stdout)). In
Python 3.0, these calls are removed; use
subprocess.Popen() instead. The subprocess module in
version 2.4 and later allows scripts to spawn new pro-
cesses, connect to their input/output/error pipes, and ob-
tain their return codes. See the Python Library Reference.

spawn*(args...)
A family of functions for spawning programs and com-
mands. See “Process Control” on page 150, as well as the
Python Library Reference for more details. The
subprocess module is a generally preferred alternative to
these calls.

Environment Tools
These attributes export execution environment and context.

environ
The shell environment variable dictionary-like object.
os.environ['USER'] is the value of variable USER in the shell
(equivalent to $USER in Unix and %USER% in DOS).

144 | Python Pocket Reference



Initialized on program start-up. Changes made to os.envi
ron by key assignment are exported outside Python using
a call to C’s putenv and are inherited by any processes that
are later spawned in any way, as well as any linked-in C
code.

putenv(varname, value)
Sets the shell environment variable named varname to the
string value. Affects subprocesses started with system,
popen, spawnv, or fork and execv. Assignment to
os.environ keys automatically calls putenv (but putenv
calls don’t update environ).

getcwd()
Returns the current working directory name as a string.

chdir(path)
Changes the current working directory for this process to
path, a directory name string. Future file operations are
relative to the new current working directory.

strerror(code)
Returns an error message corresponding to code.

times()
Returns a five-tuple containing elapsed CPU time infor-
mation for the calling process in floating-point seconds:
(user-time, system-time, child-user-time, child-system-
time, elapsed-real-time). Also see the section “The time
Module” on page 176.

umask(mask)
Sets the numeric umask to mask and returns the prior value.

uname()
Returns OS name tuple of strings: (systemname, nodename,
release, version, machine).

File Descriptor Tools
The following functions process files by their descriptors (fd is
a file-descriptor integer). os module descriptor-based files are
meant for low-level file tasks and are not the same as stdio

The os System Module | 145



file objects returned by the built-in open() function (though
os.fdopen and the file object fileno method convert between
the two). File objects, not descriptors, should normally be used
for most file processing.

close(fd)
Closes file descriptor fd (not a file object).

dup(fd)
Returns duplicate of file descriptor fd.

dup2(fd, fd2)
Copies file descriptor fd to fd2 (close fd2 first if open).

fdopen(fd [, mode [, bufsize]])
Returns a built-in file object (stdio) connected to file de-
scriptor fd (an integer). mode and bufsize have the same
meaning as in the built-in open() function (see the section
“Built-in Functions” on page 102). A conversion from
descriptor-based files to file objects is normally created by
the built-in open() function. Hint: use fileobj.fileno to
convert a file object to a descriptor.

fstat(fd)
Returns status for file descriptor fd (like stat).

ftruncate(fd, length)
Truncates the file corresponding to file descriptor fd so
that it is at most length bytes in size.

isatty(fd)
Returns 1 if file descriptor fd is open and connected to a
tty(-like) device.

lseek(fd, pos, how)
Sets the current position of file descriptor fd to pos (for
random access). how can be 0 to set the position relative to
the start of the file, 1 to set it relative to the current posi-
tion, or 2 to set it relative to the end.

open(filename, flags [, mode])
Opens a file descriptor-based file and returns the file de-
scriptor (an integer, not an stdio file object). Intended for
low-level file tasks only; not the same as the built-in

146 | Python Pocket Reference



open() function. mode defaults to 0777 (octal), and the
current umask value is first masked out. flag is a bitmask:
use | to combine both platform-neutral and platform-
specific flag constants defined in the os module (see
Table 18).

pipe()
See the section “Process Control” on page 150.

read(fd, n)
Reads at most n bytes from file descriptor fd and returns
those bytes as a string.

write(fd, str)
Writes all bytes in string str to file descriptor fd.

Table 18. Sample or-able flags for os.open

O_APPEND O_EXCL O_RDONLY O_TRUNC

O_BINARY O_NDELAY O_RDWR O_WRONLY

O_CREAT O_NOCTTY O_RSYNC  

O_DSYNC O_NONBLOCK O_SYNC  

File Pathname Tools
The following functions process files by their pathnames
(path is a string pathname of a file). See also the section “The
os.path Module” on page 153. In Python 2.X, this module also
includes temporary file tools that have been replaced with the
tempfile module in Python 3.0.

chdir(path)
getcwd()

See the section “Environment Tools” on page 144.

chmod(path, mode)
Changes mode of file path to numeric mode.

chown(path, uid, gid)
Changes owner/group IDs of path to numeric uid/gid.

link(srcpath, dstpath)
Creates a hard link to file src, named dst.

The os System Module | 147



listdir(path)
Returns a list of names of all the entries in the directory
path. A fast and portable alternative to the glob module
and to running shell listing commands with os.popen. See
also module glob for filename expansion. In 3.X, passed
and returns bytes instead of str to suppress Unicode file-
name decoding per platform default (also for glob,
os.walk).

lstat(path)
Like stat, but does not follow symbolic links.

mkfifo(path [, mode])
Creates a FIFO (a named pipe) identified by string path
with access permission given by numeric mode (but does
not open it). The default mode is 0666 (octal). The current
umask value is first masked out from the mode. FIFOs are
pipes that live in the filesystem and can be opened and
processed like regular files. FIFOs exist until deleted.

mkdir(path [, mode])
Makes a directory called path, with the given mode. The
default mode is 777 (octal).

makedirs(path [, mode])
Recursive directory-creation function. Like mkdir, but
makes all intermediate-level directories needed to contain
the leaf directory. Throws an exception if the leaf directory
already exists or cannot be created. mode defaults to 0777
(octal).

readlink(path)
Returns the path referenced by a symbolic link path.

remove(path)
unlink(path)

Removes (deletes) the file named path. remove is identical
to unlink. See rmdir and removedirs, discussed in this list,
for removing directories.

removedirs(path)
Recursive directory-removal function. Similar to rmdir,
but if the leaf directory is successfully removed, then di-

148 | Python Pocket Reference



rectories corresponding to the rightmost path segments
will be pruned away until either the whole path is
consumed or an error is raised. Throws an exception if the
leaf directory could not be removed.

rename(srcpath, dstpath)
Renames (moves) file src to name dst.

renames(oldpath, newpath)
Recursive directory- or file-renaming function. Like
rename, but creation of any intermediate directories
needed to make the new pathname good is attempted first.
After the rename, directories corresponding to the right-
most path segments of the old name will be pruned away
using removedirs.

rmdir(path)
Removes (deletes) a directory named path.

stat(path)
Runs stat system call for path; returns a tuple of integers
with low-level file information (whose items are defined
and processed by tools in module stat).

symlink(srcpath, dstpath)
Creates a symbolic link to file src, called dst.

utime(path, (atime, mtime))
Sets file path access and modification times.

access(path, mode)
Consult the Python Library Reference or Unix manpages
for details.

walk(top [, topdown=True [, onerror=None]
[, followlinks=False]]])

Generates the filenames in a directory tree by walking the
tree either top-down or bottom-up. For each directory in
the tree rooted at directory top (including top itself), yields
a three-tuple (dirpath, dirnames, filenames). dirpath is
a string, the path to the directory. dirnames is a list of the
names of the subdirectories in dirpath (excluding .
and ..). filenames is a list of the names of the nondirectory
files in dirpath. Note that the names in the lists do not

The os System Module | 149



contain path components. To get a full path (which
begins with top) to a file or directory in dirpath, do
os.path.join(dirpath, name).

If optional argument topdown is true or not specified, the
triple for a directory is generated before the triples for any
of its subdirectories (directories are generated top-down).
If topdown is false, the triple for a directory is generated
after the triples for all its subdirectories (directories are
generated bottom-up). If optional onerror is specified, it
should be a function, which will be called with one argu-
ment, an os.error instance. By default, will not walk
down into symbolic links that resolve to directories; set
followlinks to True to visit directories pointed to by sym-
links, on systems that support them.

Python 2.X also provides an os.path.walk() call with sim-
ilar tree-walking functionality, using an event-handler
function callback instead of a generator. In Python 3.0,
os.path.walk() is removed due to its redundancy; use
os.walk() instead. See also module glob for filename
expansion.

Process Control
The following functions are used to create and manage pro-
cesses and programs. Refer also to the section “Shell Com-
mands” on page 143 for other ways to start programs and files.

abort()
Sends a SIGABRT signal to the current process. On Unix,
the default behavior is to produce a core dump; on Win-
dows, the process immediately returns exit code 3.

execl(path, arg0, arg1,...)
Equivalent to execv(path, (arg0, arg1,...)).

execle(path, arg0, arg1,..., env)
Equivalent to execve(path, (arg0, arg1,...), env).

execlp(path, arg0, arg1,...)
Equivalent to execvp(path, (arg0, arg1,...)).

150 | Python Pocket Reference



execve(path, args, env)
Like execv, but the env dictionary replaces the shell vari-
able environment. env must map strings to strings.

execvp(path, args)
Like execv(path, args), but duplicates the shell’s actions
in searching for an executable file in a list of directories.
The directory list is obtained from os.environ['PATH'].

execvpe(path, args, env)
A cross between execve and execvp. The directory list is
obtained from os.environ['PATH'].

execv(path, args)
Executes the executable file path with the command-line
argument args, replacing the current program in this pro-
cess (the Python interpreter). args can be a tuple or a list
of strings, and it starts with the executable’s name by con-
vention (argv[0]). This function call never returns, unless
an error occurs while starting the new program.

_exit(n)
Exits the process immediately with status n, without per-
forming cleanup. Normally used only in a child process
after a fork; the standard way to exit is to call sys.exit(n).

fork()
Spawns a child process (a virtual copy of the calling pro-
cess, running in parallel); returns 0 in the child and the
new child’s process ID in the parent. Not available in
standard Windows Python, but is available on Windows
in Cygwin Python.

getpid()
getppid()

Returns the process ID of the current (calling) process;
getppid() returns the parent process ID.

getuid()
geteuid()

Returns the process’s user ID; geteuid returns the effective
user ID.

The os System Module | 151



kill(pid, sig)
Kills the process with ID pid by sending signal sig. See
also the signal module for register signal handlers.

mkfifo(path [, mode])
See the section “File Pathname Tools” on page 147 (files
used for process synchronization).

nice(increment)
Adds increment to process’s “niceness” (i.e., lowers its
CPU priority).

pipe()
Returns a tuple of file descriptors (rfd, wfd) for reading
and writing a new anonymous (unnamed) pipe. Used for
cross-process communication.

plock(op)
Locks program segments into memory. op (defined in
<sys./lock.h>) determines which segments are locked.

spawnv(mode, path, args)
Executes program path in a new process, passing the ar-
guments specified in args as a command line. args can be
a list or a tuple. mode is a magic operational constant made
from the following names: P_WAIT, P_NOWAIT, P_NOWAITO,
P_OVERLAY, and P_DETACH. On Windows, roughly equiva-
lent to a fork+execv combination (fork is not yet available
on standard Windows Python, though popen and system
are). See also the subprocess module for more powerful
alternatives.

spawnve(mode, path, args, env)
Like spawnv, but passes the contents of mapping env as the
spawned program’s shell environment.

wait()
Waits for completion of a child process. Returns a tuple
with child’s ID and exit status.

waitpid(pid, options)
Waits for child process with ID pid to complete. options
is 0 for normal use, or os.WNOHANG to avoid hanging if no
child status is available. If pid is 0, the request applies to

152 | Python Pocket Reference



any child in the process group of the current process.
See also the process exit status-check functions
documented in the Python Library Reference (e.g.,
WEXITSTATUS(status) to extract the exit code).

The os.path Module
The os.path module provides additional file directory
pathname-related services and portability tools. This is a nes-
ted module: its names are nested in the os module within the
submodule os.path (e.g., the exists function is obtained by
importing os and using os.path.exists).

Most functions in this module take an argument path, the
string directory pathname of a file (e.g., "C:\dir1\spam.txt").
Directory paths are generally coded per the platform’s con-
ventions and are mapped to the current working directory if
lacking a directory prefix. Hint: forward slashes usually work
as directory separators on all platforms. In Python 2.X, this
module includes an os.path.walk tool, which has been re-
placed by os.walk in Python 3.0.

abspath(path)
Returns a normalized absolute version of path.
On most platforms, this is equivalent to
normpath(join(os.getcwd(), path)).

basename(path)
Same as second half of pair returned by split(path).

commonprefix(list)
Returns longest path prefix (character by character) that
is a prefix of all paths in list.

dirname(path)
Same as first half of pair returned by split(path).

exists(path)
True if string path is the name of an existing file path.

expanduser(path)
Returns string that is path with embedded ̃  username ex-
pansion done.

The os System Module | 153



expandvars(path)
Returns string that is path with embedded $ environment
variables expanded.

getatime(path)
Returns time of last access of path (seconds since the
epoch).

getmtime(path)
Returns time of last modification of path (seconds since
the epoch).

getsize(path)
Returns size, in bytes, of file path.

isabs(path)
True if string path is an absolute path.

isfile(path)
True if string path is a regular file.

isdir(path)
True if string path is a directory.

islink(path)
True if string path is a symbolic link.

ismount(path)
True if string path is a mount point.

join(path1 [, path2 [, ...]])
Joins one or more path components intelligently (using
platform-specific separator conventions between each
part).

normcase(path)
Normalizes case of a pathname. Has no effect on Unix; on
case-insensitive filesystems, converts to lowercase; on
Windows, also converts / to \.

normpath(path)
Normalizes a pathname. Collapses redundant separators
and up-level references; on Windows, converts / to \.

realpath(path)
Returns the canonical path of the specified filename, elim-
inating any symbolic links encountered in the path.

154 | Python Pocket Reference



samefile(path1, path2)
Returns true if both pathname arguments refer to the
same file or directory.

sameopenfile(fp1, fp2)
Returns true if both file objects refer to the same file.

samestat(stat1, stat2)
Returns true if both stat tuples refer to the same file.

split(path)
Splits path into (head, tail), where tail is the last path-
name component and head is everything leading up to
tail. Same as tuple (dirname(path), basename(path)).

splitdrive(path)
Splits path into a pair ('drive:', tail) (on Windows).

splitext(path)
Splits path into (root, ext), where the last component of
root contains no ., and ext is empty or starts with a ..

walk(path, visitor, data)
An alternative to os.walk in Python 2.X only. Removed in 
Python 3.0: use os.walk, not os.path.walk.

The re Pattern-Matching Module
The re module is the standard regular expression-matching
interface. Regular expression (RE) patterns are specified as
strings. This module must be imported.

Module Functions
compile(pattern [, flags])

Compile an RE pattern string into a regular expression
object, for later matching. flags (combinable by bitwise
| operator) include the following available at the top-level
of the re module:

The re Pattern-Matching Module | 155



A or ASCII or (?a)
Makes \w, \W, \b, \B, \s, and \S perform ASCII-only
matching instead of full Unicode matching. This is
only meaningful for Unicode patterns and is ignored
for byte patterns. Note that for backward compati-
bility, the re.U flag still exists (as well as its synonym
re.UNICODE and its embedded counterpart, ?u), but
these are redundant in Python 3.0 since matches are
Unicode by default for strings (and Unicode match-
ing isn’t allowed for bytes).

I or IGNORECASE or (?i)
Case-insensitive matching.

L or LOCALE or (?L)
Makes \w, \W, \b, \B, \s, \S, \d, and \D dependent on
the current locale (default is Unicode for Python 3).

M or MULTILINE or (?m)
Matches to each newline, not whole string.

S or DOTALL or (?s)
. matches all characters, including newline.

U or UNICODE or (?u)
Makes \w, \W, \b, \B, \s, \S, \d, and \D dependent on
Unicode character properties (new in version 2.0,
and superfluous in Python 3).

X or VERBOSE or (?x)
Ignores whitespace in the pattern, outside character
sets.

match(pattern, string [, flags])
If zero or more characters at start of string match the
pattern string, returns a corresponding MatchObject in-
stance, or None if no match. flags as in compile.

search(pattern, string [, flags])
Scans through string for a location matching pattern; re-
turns a corresponding MatchObject instance, or None if no
match. flags as in compile.

156 | Python Pocket Reference



split(pattern, string [, maxsplit=0])
Splits string by occurrences of pattern. If capturing () are
used in pattern, occurrences of patterns or subpatterns
are also returned.

sub(pattern, repl, string [, count=0])
Returns string obtained by replacing the (first count) left-
most nonoverlapping occurrences of pattern (a string or
an RE object) in string by repl. repl can be a string or a
function called with a single MatchObject argument, which
must return the replacement string. repl can also include
sequence escapes \1, \2, etc., to use substrings that match
groups, or \0 for all.

subn(pattern, repl, string [, count=0])
Same as sub but returns a tuple (new-string, number-of-
subs-made).

findall(pattern, string [, flags])
Returns a list of strings giving all nonoverlapping matches
of pattern in string. If one or more groups are present in
the pattern, returns a list of groups.

finditer(pattern, string [, flags])
Returns an iterator over all nonoverlapping matches for
the RE pattern in string (match objects).

escape(string)
Returns string with all nonalphanumeric characters
backslashed, such that they can be compiled as a string
literal.

Regular Expression Objects
RE objects are returned by the re.compile function and have
the following attributes:

flags
The flags argument used when the RE object was
compiled.

groupindex
Dictionary of {group-name: group-number} in the pattern.

The re Pattern-Matching Module | 157



pattern
The pattern string from which the RE object was
compiled.

match(string [, pos [, endpos]])
search(string [, pos [, endpos]])
split(string [, maxsplit=0])
sub(repl, string [, count=0])
subn(repl, string [, count=0])
findall(string [, pos[, endpos]])
finditer(string [, pos[, endpos]])

Same as earlier re module functions, but pattern is im-
plied, and pos and endpos give start/end string indexes for
the match.

Match Objects
Match objects are returned by successful match and search
operations, and have the following attributes (see the Python
Library Reference for additional attributes omitted here).

pos, endpos
Values of pos and endpos passed to search or match.

re
RE object whose match or search produced this.

string
String passed to match or search.

group([g1, g2,...])
Returns substrings that were matched by parenthesized
groups in the pattern. Accepts zero or more group num-
bers. If one argument, result is the substring that matched
the group whose number is passed. If multiple arguments,
result is a tuple with one matched substring per argument.
If no arguments, returns entire matching substring. If any
group number is 0, return value is entire matching string;
otherwise, returns string matching corresponding paren-
thesized group number in pattern (1...N, from left to

158 | Python Pocket Reference



right). Group number arguments can also be group
names.

groups()
Returns a tuple of all groups of the match; groups not
participating in the match have a value of None.

groupdict()
Returns a dictionary containing all the named subgroups
of the match, keyed by the subgroup name.

start([group]), end([group])
Indexes of start and end of substring matched by group (or
entire matched string, if no group). If match object M,
M.string[M.start(g):M.end(g)]==M.group(g).

span([group])
Returns the tuple (start(group), end(group)).

expand(template)
Returns the string obtained by doing backslash substitu-
tion on the template string template, as done by the sub
method. Escapes such as \n are converted to the appro-
priate characters, and numeric back-references (\1, \2)
and named back-references (\g<1>, \g<name>) are replaced
by the corresponding group.

Pattern Syntax
Pattern strings are specified by concatenating forms (see Ta-
ble 19), as well as by character class escapes (see Table 20).
Python character escapes (e.g., \t for tab) can also appear. Pat-
tern strings are matched against text strings, yielding a Boolean
match result, as well as grouped substrings matched by sub-
patterns in parentheses:

>>> import re
>>> patt = re.compile('hello[ \t]*(.*)')
>>> mobj = patt.match('hello  world!')
>>> mobj.group(1)
'world!'

The re Pattern-Matching Module | 159



In Table 19, C is any character, R is any regular expression form
in the left column of the table, and m and n are integers. Each
form usually consumes as much of the string being matched as
possible, except for the nongreedy forms (which consume as
little as possible, as long as the entire pattern still matches the
target string).

Table 19. Regular expression pattern syntax

Form Description

. Matches any character (including
newline if DOTALL flag is
specified).

^ Matches start of string (of every
line in MULTILINE mode).

$ Matches end of string (of every
line in MULTILINE mode).

C Any nonspecial character
matches itself.

R* Zero or more occurrences of pre-
ceding regular expression R (as
many as possible).

R+ One or more occurrences of pre-
ceding regular expression R (as
many as possible).

R? Zero or one occurrence of preced-
ing regular expression R.

R{m} Matches exactly m repetitions of
preceding regular expression R.

R{m,n} Matches from m to n repetitions
of preceding regular expression R.

R*?, R+?, R??, R{m,n}? Same as *, +, and ?, but matches
as few characters/times as possi-
ble; nongreedy.

[...] Defines character set; e.g.,
[a-zA-Z] matches all letters
(also see Table 20).

160 | Python Pocket Reference



Form Description

[^...] Defines complemented character
set: matches if character is not in
set.

\ Escapes special characters (e.g.,
*?+|()) and introduces
special sequences (see Table 20).
Due to Python rules, write as \\
or r'\\'.

\\ Matches a literal \; due to Python
string rules, write as \\\\ in pat-
tern, or r'\\'.

\number Matches the contents of the group
of the same number: (.+) \1
matches “42 42”

R|R Alternative: matches left or right
R.

RR Concatenation: matches both Rs.

(R) Matches any RE inside (), and
delimits a group (retains matched
substring).

(?: R) Same as (R) but doesn’t delimit
a group.

(?= R) Look-ahead assertion: matches if
R matches next, but doesn’t
consume any of the string (e.g.,
X (?=Y) matches X if followed
by Y).

(?! R) Negative look-ahead assertion:
matches if R doesn’t match next.
Negative of (?=R).

(?P<name> R) Matches any RE inside () and de-
limits a named group (e.g.,
r'(?P<id>[a-zA-Z_]\ w*)'
defines a group named id).

The re Pattern-Matching Module | 161



Form Description

(?P=name) Matches whatever text was
matched by the earlier group
named name.

(?#...) A comment; ignored.

(?letter) letter is one of a, i, L, m, s,
x, or u. Set flag (re.A, re.I,
re.L, etc.) for entire RE.

(?<= R) Positive look-behind assertion:
matches if preceded by a match of
fixed-width R.

(?<! R) Negative look-behind assertion:
matches if not preceded by a
match of fixed-width R.

(?(id/name)yespattern|nopattern) Will try to match with
yespattern if the group with
given id or name exists, else with
optional nopattern.

In Table 20, \b, \B, \d, \D, \s, \S, \w, and \W behave differently
depending on flags, and defaults to Unicode in Python 3.0,
unless ASCII (?a) is used. Tip: use raw strings (r'\n') to liter-
alize backslashes in Table 20 class escapes.

Table 20. Regular expression pattern special sequences

Sequence Description

\number Matches text of the group
number (from 1).

\A Matches only at the start of the
string.

\b Empty string at word boundaries.

162 | Python Pocket Reference



Sequence Description

\B Empty string not at word
boundary.

\d Any decimal digit (like [0–9]).

\D Any nondecimal digit character
(like [^0–9]).

\s Any whitespace character (like
[ \t\n\r\f\v]).

\S Any nonwhitespace character
(like [^ \t\n\r\f\v]).

\w Any alphanumeric character.

\W Any nonalphanumeric character.

\Z Matches only at the end of the
string.

Object Persistence Modules
Three modules comprise the object persistence interface.

dbm (anydbm in Python 2.X)
Key-based string-only storage files.

pickle (and cPickle in Python 2.X)
Serializes an in-memory object to/from file streams.

shelve
Key-based persistent object stores: pickles objects to/from
dbm files.

The shelve module implements persistent object stores.
shelve in turn uses the pickle module to convert (serialize) in-
memory Python objects to byte-stream strings and the dbm
module to store serialized byte-stream strings in access-by-key
files.

Object Persistence Modules | 163



NOTE
In Python 2.X, dbm is named anydbm, and the cPickle
module is an optimized version of pickle that may be
imported directly and is used automatically by shelve, if
present. In Python 3.0, cPickle is renamed _pickle and
is automatically used by pickle if present—it need not
be imported directly and is acquired by shelve.

Also note that in Python 3.0 the Berkeley DB (a.k.a.
bsddb) interface for dbm is no longer shipped with Python
itself, but is a third-party open source extension which
must be installed separately (see the Python 3.0 Library
Reference for resources).

dbm and shelve Modules
dbm is an access-by-key filesystem: strings are stored and
fetched by their string keys. The dbm module selects the keyed-
access file implementation in your Python interpreter and
presents a dictionary-like API for scripts. A persistent object
shelve is used like a simple dbm file, except that the dbm module
is replaced by shelve, and the stored value can be almost any
kind of Python object (though keys are still strings). In most
respects, dbm files and shelves work like dictionaries that must
be opened before use, and closed after making changes; all
mapping operations and some dictionary methods work.

import shelve
import dbm

Gets whatever dbm support library is available: dbm.bsd,
dbm.gnu, dbm.ndbm, or dbm.dumb.

open(…)

file = shelve.open(filename 
   [, flag='c' 
   [, protocol=None 
   [, writeback=False]]])
file = dbm.open(filename 
   [, flag='r' 
   [, mode]])

164 | Python Pocket Reference



Creates a new or opens an existing dbm file.

flag is the same in shelve and dbm (shelve passes it on to dbm).
It can be 'r' to open an existing database for reading only
(dbm default); 'w' to open an existing database for reading and
writing; 'c' to create the database if it doesn’t exist (shelve
default); or 'n', which will always create a new empty data-
base. The dbm.dumb module (used by default in 3.0 if no other
library is installed) ignores flag—the database is always
opened for update and is created if it doesn’t exist.

For dbm, the optional mode argument is the Unix mode of the
file, used only when the database has to be created. It defaults
to octal 0o666.

For shelve, the protocol argument is passed on from shelve to
pickle. It gives the pickling protocol number (described ahead)
used to store shelved objects; it defaults to 0 in Python 2.6, and
to 2 in Python 3.0. By default, changes to objects fetched from
shelves are not automatically written back to disk. If the op-
tional writeback parameter is set to True, all entries accessed
are cached in memory, and written back at close time; this
makes it easier to mutate mutable entries in the shelve, but can
consume memory for the cache, making the close operation
slow because all accessed entries are written back.

file['key'] = value
Store: creates or changes the entry for 'key'. Value is a
string for dbm, or an arbitrary object for shelve.

value = file['key']
Fetch: loads the value for the 'key' entry. For shelve, re-
constructs object in memory.

count = len(file)
Size: returns the number of entries stored.

index = file.keys()
Index: fetches the stored keys (can use in a for or other
iteration context).

found = 'key' in file (or has_key() in 2.X only)
Query: sees if there’s an entry for 'key'.

Object Persistence Modules | 165



del file['key']
Delete: removes the entry for 'key'.

file.close()
Manual close; required to flush updates to disk for some
underlying dbm interfaces.

pickle Module
The pickle interface converts nearly arbitrary in-memory
Python objects to/from serialized byte-streams. These byte-
streams can be directed to any file-like object that has the ex-
pected read/write methods. Unpickling re-creates the original
in-memory object (with the same value, but a new identity
[address]).

See the prior note about Python 2.X’s cPickle and Python 3.0’s
_pickle optimized modules. Also see the makefile method of
socket objects for shipping serialized objects over networks.

Pickling interfaces
P = pickle.Pickler(fileobject [, protocol=None])

Makes a new pickler, for saving to an output file object.

P.dump(object)
Writes an object onto the pickler’s file/stream.

pickle.dump(object, fileobject [, protocol=None])
Combination of the previous two: pickles object onto file.

string = pickle.dumps(object [, protocol=None])
Returns pickled representation of object as a string (a
bytes string in Python 3.0).

Unpickling interfaces
U = pickle.Unpickler(fileobject,
encoding="ASCII", errors="strict")

Makes unpickler, for loading from input file object.

object = U.load()
Reads object from the unpickler’s file/stream.

166 | Python Pocket Reference



object = pickle.load(fileobject,
encoding="ASCII", errors="strict")

Combination of the previous two: unpickles object from
file.

object = pickle.loads(string,
encoding="ASCII", errors="strict")

Reads object from a character string (a bytes string in
Python 3.0).

Usage notes
• In Python 3.0, files used to store pickled objects should

always be opened in binary mode for all protocols, be-
cause the pickler produces bytes strings, and text mode
files do not support writing bytes (text mode files encode
and decode Unicode text in 3.0).

• In Python 2.6, files used to store pickled objects must be
opened in binary mode for all pickle protocols >= 1, to
suppress line-end translations in binary pickled data. Pro-
tocol 0 is ASCII-based, so its files may be opened in either
text or binary mode, as long as they are done so
consistently.

• fileobject is an open file object, or any object that im-
plements file object attributes called by the interface.
Pickler calls the file write method with a string argument.
Unpickler calls the file read method with a byte-count and
readline without arguments.

• protocol is an optional argument that selects a format for
pickled data, available in both the Pickler constructor and
the module’s dump and dumps convenience functions. This
argument takes a value 0...3, where higher protocol num-
bers are generally more efficient, but may also be incom-
patible with unpicklers in earlier Python releases. The
default protocol number in Python 3.0 is 3, which cannot
be unpickled by Python 2.X. The default protocol in
Python 2.6 is 0, which is less efficient but most portable.
Protocol −1 automatically uses the highest protocol

Object Persistence Modules | 167



supported. When unpickling, protocol is implied by pick-
led data contents.

• The unpickler’s encoding and errors optional keyword-
only arguments are available in Python 3.0 only. They are
used to decode 8-bit string instances pickled by Python
2.X. These default to 'ASCII' and 'strict', respectively.

• Pickler and Unpickler are exported classes that may be
customized by subclassing. See the Python Library Refer-
ence for available methods.

The tkinter GUI Module and Tools
tkinter (named Tkinter in Python 2.X, and a module package
in Python 3.0) is a portable graphical user interface (GUI) con-
struction library shipped with Python as a standard library
module. tkinter provides an object-based interface to the open
source Tk library and implements native look and feel for
Python-coded GUIs on Windows, X-Windows, and Mac OS.
It is portable, simple to use, well documented, widely used,
mature, and well supported. Other portable GUI options for
Python such as wxPython and PyQT are third-party extensions
with richer widget sets but generally more complex coding
requirements.

tkinter Example
In tkinter scripts, widgets are customizable classes (e.g.,
Button, Frame), options are keyword arguments (e.g.,
text="press"), and composition refers to object embedding, not
pathnames (e.g., Label(top,...)):

from tkinter import *               # widgets, constants

def msg():                          # callback handler
    print('hello stdout...')

top = Frame()                       # make a container
top.pack()
Label(top,  text="Hello world").pack(side=TOP)

168 | Python Pocket Reference



widget = Button(top, text="press", command=msg)
widget.pack(side=BOTTOM)
top.mainloop()

tkinter Core Widgets
Table 21 lists the primary widget classes in the tkinter module.
These are true Python classes that can be subclassed and em-
bedded in other objects. To create a screen device, make
an instance of the corresponding class, configure it, and ar-
range it with one of the geometry manager interface methods
(e.g., Button(text='hello').pack()). In addition to Table 21’s
classes, the tkinter module provides a large set of predefined
names (a.k.a. constants) used to configure widgets (e.g., RIGHT,
BOTH, YES); these are automatically loaded from
tkinter.constants (Tkconstants in Python 2.X).

Table 21. Module tkinter core widget classes

Widget class Description

Label Simple message area

Button Simple labeled pushbutton widget

Frame Container for attaching and arranging other widget objects

Toplevel, Tk Top-level windows managed by the window manager

Message Multiline text-display field (label)

Entry Simple single-line text entry field

Checkbutton Two-state button widget, used for multiple-choice selections

Radiobutton Two-state button widget, used for single-choice selections

Scale A slider widget with scalable positions

PhotoImage Image object for placing full-color images on other widgets

BitmapImage Image object for placing bitmap images on other widgets

Menu Options associated with a Menubutton or top-level window

Menubutton Button that opens a Menu of selectable options/submenus

Scrollbar Bar for scrolling other widgets (e.g., Listbox, Canvas, Text)

Listbox List of selection names

The tkinter GUI Module and Tools | 169



Widget class Description

Text Multiline text browse/edit widget, support for fonts, etc.

Canvas Graphics drawing area: lines, circles, photos, text, etc.

OptionMenu Composite: pull-down selection list

PanedWindow A multipane window interface

LabelFrame A labeled frame widget

Spinbox A multiple selection widget

ScrolledText Python 2.X name (available in module tkinter.scrolled
text in Python 3.0); Composite: text with attached scrollbar

Dialog Python 2.X name (available in module tkinter.dialog in
Python 3.0); Old: common dialog maker (see newer common dialog
calls in the next section)

Common Dialog Calls

Module tkinter.messagebox (tkMessageBox in Python 2.X)
showinfo(title=None, message=None, **options)
showwarning(title=None, message=None, **options)
showerror(title=None, message=None, **options)
askquestion(title=None, message=None, **options)
askokcancel(title=None, message=None, **options)
askyesno(title=None, message=None, **options)
askretrycancel(title=None, message=None, **options)

Module tkinter.simpledialog (tkSimpleDialog in Python 2.X)
askinteger(title, prompt, **kw)
askfloat(title, prompt, **kw)
askstring(title, prompt, **kw)

Module tkinter.colorchooser (tkColorChooser in Python 2.X)
askcolor(color = None, **options)

Module tkinter.filedialog (tkFileDialog in Python 2.X)
class Open
class SaveAs
class Directory

170 | Python Pocket Reference



askopenfilename(**options)
asksaveasfilename(**options)
askopenfile(mode="r", **options)
asksaveasfile(mode="w", **options)
askdirectory(**options)

The common dialog call options are defaultextension (added
to filename if not explicitly given), filetypes (sequence of
(label, pattern) tuples), initialdir (initial directory, remem-
bered by classes), initialfile (initial file), parent (window in
which to place the dialog box), and title (dialog box title).

Additional tkinter Classes and Tools
Table 22 lists some commonly used tkinter interfaces and tools
beyond the core widget class and standard dialog set.

Table 22. Additional tkinter tools

Tool category Available tools

tkinter linked-variable
classes

StringVar, IntVar, DoubleVar, BooleanVar (in
tkinter module)

Geometry manage-
ment methods

pack, grid, place widget object methods, plus configura-
tion options in module

Scheduled callbacks Widget after, wait, and update methods; file I/O
callbacks

Other tkinter tools Clipboard access; bind/Event low-level event processing
widget object methods; widget config options; modal dialog
box support

tkinter extensions
(search the Web)

PMW: more widgets; PIL: images; tree widgets, font support,
drag-and-drop, tix widgets, ttk themed widgets, etc.

Tcl/Tk-to-Python/tkinter Mappings
Table 23 compares Python’s tkinter API to the base Tk library
as exposed by the Tcl language. In general, Tcl’s command
strings map to objects in the Python language. Specifically, in
Python’s tkinter, the Tk GUI interface differs from Tcl in the
following ways:

The tkinter GUI Module and Tools | 171



Creation
Widgets are created as class instance objects by calling a
widget class.

Masters (parents)
Parents are previously created objects, passed to widget
class constructors.

Widget options
Options are constructor or config keyword arguments, or
indexed keys.

Operations
Widget operations (actions) become tkinter widget class
object methods.

Callbacks
Callback handlers are any callable object: function,
method, lambda, class with __call__ method, etc.

Extension
Widgets are extended using Python class inheritance
mechanisms.

Composition
Interfaces are constructed by attaching objects, not by
concatenating names.

Linked variables
Variables associated with widgets are tkinter class objects
with methods.

Table 23. Tk-to-tkinter mappings

Operation Tcl/Tk Python/tkinter

Creation frame .panel panel = Frame()

Masters button .panel.quit quit = Button(panel)

Options button .panel.go -fg
black

go = Button(panel,
fg='black')

Configure .panel.go config -bg
red

go.config(bg='red')
go['bg'] = 'red'

172 | Python Pocket Reference



Operation Tcl/Tk Python/tkinter

Actions .popup invoke popup.invoke()

Packing pack .panel -side
left -fill x

panel.pack(side=LEFT,
fill=X)

Internet Modules and Tools
This section summarizes Python’s support for Internet
scripting.

Commonly Used Library Modules
Following are summaries of some of the more commonly used
modules in the Python Internet modules set. This is just a rep-
resentative sample; see the Python Library Reference for a more
complete list.

socket
Low-level network communications support (TCP/IP,
UDP, etc.). Interfaces for sending and receiving data over
BSD-style sockets: socket.socket() makes an object with
socket call methods (e.g., object.bind()). Most protocol
and server modules use this module internally.

socketserver (SocketServer in Python 2.X)
Framework for general threading and forking network
servers.

xdrlib
Encodes binary data portably (also see socket modules
earlier in this list).

select
Interfaces to Unix and Windows select function. Waits
for activity on one of N files or sockets. Commonly used
to multiplex among multiple streams or to implement
timeouts. Works only for sockets on Windows, not files.

Internet Modules and Tools | 173



cgi
Server-side CGI script support: cgi.FieldStorage parses
the input stream; cgi.escape applies HTML escape
conventions to output streams. To parse and access form
information: after a CGI script calls
form=cgi.FieldStorage(), form is a dictionary-like object
with one entry per form field (e.g., form["name"].value is
form field name text).

urllib.request (urllib, urllib2 in Python 2.X)
Fetches web pages and server script outputs from their
Internet addresses (URLs): urllib.request.urlopen(url)
returns file with read methods; also
urllib.request.urlretrieve(remote, local). Supports
HTTP, FTP, gopher, and local file URLs.

urllib.parse (urlparse in Python 2.X)
Parses URL string into components. Also contains tools
for escaping URL text: urllib.parse.quote_plus(str)
does URL escapes for text inserted into HTML output
streams.

ftplib
FTP (file transfer protocol)  modules. ftplib provides in-
terfaces for Internet file transfers in Python programs. Af-
ter ftp=ftplib.FTP('sitename'), ftp has methods for login,
changing directories, fetching/storing files and listings,
etc. Supports binary and text transfers; works on any ma-
chine with Python and an Internet connection.

poplib, imaplib, smtplib
POP, IMAP (mail fetch), and SMTP (mail send) protocol
modules.

email package
Parses and constructs email messages with headers and
attachments. Also contains MIME support.

http.client (httplib in Python 2), nntplib, telnetlib
HTTP (web), NNTP (news), and Telnet protocol client
modules.

174 | Python Pocket Reference



http.server (CGIHTTPServer and SimpleHTTPServer in Python
2.X)

HTTP request server implementations.

xml package, html package (htmllib in Python 2.X)
Parse MXML documents and HTML web page contents.
xml package supports DOM, SAX, and ElementTree pars-
ing models.

xmlrpc package (xmlrpclib in Python 2.X)
XML-RPC remote method call protocol.

uu, binhex, base64, binascii, quopri
Encodes and decodes binary (or other) data transmitted
as text.

Table 24 lists some of these modules by protocol type.

Table 24. Selected Python Internet modules by protocol

Protocol Common function
Port
number Python module

HTTP Web pages 80 http.client,
urllib.request, xmlrpc.*

NNTP Usenet news 119 nntplib

FTP data
default

File transfers 20 ftplib, urllib.request

FTP control File transfers 21 ftplib, urllib.request

SMTP Sending email 25 smtplib

POP3 Fetching email 110 poplib

IMAP4 Fetching email 143 imaplib

Telnet Command lines 23 telnetlib

Other Standard Library Modules
This section documents a handful of additional standard li-
brary modules. See the Python Library Reference for details on
all built-in tools, and the PyPI websites (described in “Assorted

Other Standard Library Modules | 175



Hints” on page 187) or your favorite web search engine for
third-party modules and tools.

The math Module
The math module exports C standard math library tools for use
in Python. Table 25 lists this module’s exports; see the Python
Library Reference for more details. Also see the cmath module
in the Python library for complex number tools and the
NumPy system for advanced numeric work.

Table 25. math module exports in Python 3.0 and 2.6

acos acosh asin asinh atan

atan2 atanh ceil copysign cos

cosh degrees e exp fabs

factorial floor fmod frexp fsum

hypot isinf isnan ldexp log

log10 log1p modf pi pow

radians sin sinh sqrt tan

tanh trunc    

The time Module
Following is a partial list of time module exports. See the
Python Library Reference for more details.

clock()
Returns the CPU time or real time since the start of the
process or since the first call to clock(). Precision and
semantics is platform-dependent (see Python manuals).
Returns seconds expressed as a floating-point number.
Useful for benchmarking and timing alternative code
sections.

ctime(secs)
Converts a time expressed in seconds since the epoch to
a string representing local time (e.g., ctime(time())). The

176 | Python Pocket Reference



argument is optional and defaults to the current time if
omitted.

time()
Returns a floating-point number representing UTC time
in seconds since the epoch. On Unix, epoch is 1970. May
have better precision than clock() on some platforms (see
Python manuals).

sleep(secs)
Suspends the process’s (calling thread’s) execution for
secs seconds. secs can be a float to represent fractions of
seconds.

The datetime Module
Tools for subtracting dates, adding days to dates, and so on.
See the Python Library Reference for details.

>>> from datetime import date, timedelta
>>> date(2009, 12, 17) - date(2009, 11, 29)
datetime.timedelta(18)

>>> date(2009, 11, 29) + timedelta(18)
datetime.date(2009, 12, 17)

Threading Modules
Threads are lightweight processes that share global memory
(i.e., lexical scopes and interpreter internals) and all run in
parallel within the same process. Python thread modules work
portably across platforms.

_thread (named thread in Python 2.X)
Python’s basic and low-level thread interface
module. Tools to start, stop, and synchronize
functions run in parallel. To spawn a thread:
_thread.start_new_thread(function, argstuple). Func-
tion start_new_thread is a synonym for start_new (which
is documented as obsolete in 3.0). To synchronize
threads, use thread locks: lock=thread.allocate_lock();
lock.acquire(); update-objects; lock.release().

Other Standard Library Modules | 177



threading
Module threading builds upon thread, to provide cus-
tomizable threading-oriented classes: Thread, Condition,
Semaphore, Lock, etc. Subclass Thread to overload run ac-
tion method. This is more powerful than _thread, but also
requires more code in simpler use cases.

queue (named Queue in Python 2.X)
A multiproducer, multiconsumer FIFO queue of objects
implementation, especially useful for threaded applica-
tions (see the Python Library Reference). Locks get and
put operations to synchronize access to data on the queue.

Binary Data Parsing
The struct module provides an interface for parsing and con-
structing packed binary data as strings. Commonly used in
conjunction with the rb and wb binary-mode file open modes.
See the Python Library Reference for format datatype and en-
dian codes.

string = struct.pack(format, v1, v2, ...)
Returns a string (a bytes in 3.0 and a str in 2.6) containing
the values v1, v2, etc., packed according to the given for-
mat string. The arguments must match the values required
by the format’s type codes exactly. The format string can
specify the endian format of the result in its first character,
as well as repeat counts for individual type codes.

tuple = struct.unpack(format, string)
Unpacks the string (a bytes in 3.0 and a str in 2.6) ac-
cording to the given format string.

struct.calcsize(fmt)
Returns size of the struct (and hence of the string) corre-
sponding to the given format.

Following is an example showing how to pack and unpack data
using struct in Python 3.0 (Python 2 uses normal str strings
instead of bytes):

178 | Python Pocket Reference



>>> import struct
>>> data = struct.pack('4si', 'spam', 123)
>>> data
b'spam{\x00\x00\x00'
>>> x, y = struct.unpack('4si', data)
>>> x, y
(b'spam', 123)

>>> open('data', 'wb').write(struct.pack('>if', 1, 2.0))
8
>>> open('data', 'rb').read()
b'\x00\x00\x00\x01@\x00\x00\x00'

>>> struct.unpack('>if', open('data', 'rb').read())
(1, 2.0)

Python Portable SQL Database API
Python’s portable SQL database API provides script portability
between different vendor-specific SQL database packages. For
each vendor, install the vendor-specific extension module, but
write your scripts according to the portable database API. Your
database scripts will largely continue working unchanged after
migrating to a different underlying vendor package.

Note that most database extension modules are not part of the
Python standard library; they must be fetched and installed
separately. The SQLite embedded in-process relational data-
base package is included with Python as standard library
module sqlite3, intended for program data storage and pro-
totyping. See also the section “Object Persistence Mod-
ules” on page 163 for simpler storage alternatives.

API Usage Example
The following uses the SQLite standard library module. Usage
for enterprise-level database such as MySQL, PostgreSQL, and
Oracle are similar, but require different connection parameters
and installation of extension modules:

Python Portable SQL Database API | 179



>>> from sqlite3 import connect
>>> conn = connect(r'C:\users\mark\misc\temp.db')
>>> curs = conn.cursor()

>>> curs.execute('create table jobs (name, title, pay)')
>>> prefix = 'insert into jobs values '
>>> curs.execute(prefix + "('Bob', 'dev', 100)")
>>> curs.execute(prefix + "('Sue', 'dev', 120)")

>>> curs.execute("select * from jobs where pay > 100")
>>> for (name, title, pay) in curs.fetchall():
...     print(name, title, pay)
...
Sue dev 120

>>> curs.execute("select name, pay from jobs").fetchall()
[('Bob', 100), ('Sue', 120)]

>>> query = "select * from jobs where title = ?"
>>> curs.execute(query, ('dev',)).fetchall()
[('Bob', 'dev', 100), ('Sue', 'dev', 120)]

Module Interface
This and the following sections provide a partial list of exports;
see the full API specification at http://www.python.org for de-
tails omitted here.

connect(parameters...)
Constructor for connection objects; represents a connec-
tion to the database. Parameters are vendor-specific.

paramstyle
String giving type of parameter marker formatting (e.g.,
qmark = ? style).

Warning
Exception raised for important warnings such as data
truncations.

Error
Exception that is the base class of all other error
exceptions.

180 | Python Pocket Reference

http://www.python.org


Connection Objects
Connection objects respond to the following methods:

close()
Closes the connection now (rather than when __del__ is
called).

commit()
Commits any pending transactions to the database.

rollback()
Rolls database back to the start of any pending transac-
tion; closing a connection without committing the
changes first will cause an implicit rollback.

cursor()
Returns a new cursor object for submitting SQL strings
through the connection.

Cursor Objects
Cursor objects represent database cursors, used to manage the
context of a fetch operation.

description
Sequence of seven-item sequences; each contains infor-
mation describing one result column: (name, type_code,
display_size, internal_size, precision, scale, null_ok).

rowcount
Specifies the number of rows that the last execute* pro-
duced (for DQL statements like select) or affected (for
DML statements like update or insert).

callproc(procname [,parameters])
Calls a stored database procedure with the given name.
The sequence of parameters must contain one entry for
each argument that the procedure expects; result is re-
turned as a modified copy of the inputs.

Python Portable SQL Database API | 181



close()
Closes the cursor now (rather than when __del__ is
called).

execute(operation [,parameters])
Prepares and executes a database operation (query or
command); parameters can be specified as a list of tuples
to insert multiple rows in a single operation (but
executemany is preferred).

executemany(operation, seq_of_parameters)
Prepares a database operation (query or command) and
executes it against all parameter sequences or mappings
in sequence seq_of_parameters. Similar to multiple
execute calls.

fetchone()
Fetches the next row of a query result set, returning a sin-
gle sequence, or None when no more data is available.

fetchmany([size=cursor.arraysize])
Fetches the next set of rows of a query result, returning a
sequence of sequences (e.g., a list of tuples). An empty
sequence is returned when no more rows are available.

fetchall()
Fetches all (remaining) rows of a query result, returning
them as a sequence of sequences (e.g., a list of tuples).

Type Objects and Constructors
Date(year,month,day)

Constructs an object holding a date value.

Time(hour,minute,second)
Constructs an object holding a time value.

None
SQL NULL values are represented by the Python None on
input and output.

182 | Python Pocket Reference



Python Idioms and Hints
This section lists common Python coding tricks and general
usage hints. Consult the Python Library Reference and Python
Language Reference (http://www.python.org/doc/) for further
information on topics mentioned here.

Core Language Hints
• S[:] makes a top-level (shallow) copy of any sequence;

copy.deepcopy(X) makes full copies; list(L) and
D.copy() copy lists and dictionaries.

• L[:0]=[X,Y,Z] inserts items at front of list L, in-place.

• L[len(L):]=[X,Y,Z], L.extend([X,Y,Z]), and L +=
[X,Y,Z] all insert multiple items at the end of a list,
in-place.

• L.append(X) and X=L.pop() can be used to implement in-
place stack operations, where the end of the list is the top
of the stack.

• Use for key in D.keys(): to iterate through dictionaries,
or simply for key in D: in version 2.2 and later. In Python
3.0 these two forms are equivalent, since keys is an iterable
view.

• Use for key in sorted(D): to iterate over dictionary keys
in sorted fashion in version 2.4 and later; the form
K=D.keys(); K.sort(); for key in K: also works in
Python 2.X but not Python 3.0, since keys results are view
objects, not lists.

• X=A or B or None assigns X to the first true object among
A and B, or None if both are false (i.e., 0 or empty).

• X,Y = Y,X swaps the values of X and Y.

• red, green, blue = range(3) assigns integer series.

• Use try/finally statements to ensure that arbitrary ter-
mination code is run; especially useful around locking
calls (acquire before the try, release in the finally).

Python Idioms and Hints | 183

http://www.python.org/doc/


• Use with/as statements to guarantee that object-specific
termination code is run; for objects that support the con-
text manager protocol (e.g., file auto-close, tread lock
auto-release).

• Wrap iterables in a list() call to view all their results in-
teractively in Python 3; this includes range(), map(), zip(),
filter(), dict.keys(), and more.

Environment Hints
• Use if __name__ == '__main__': to add self-test code or

a call to a main function at the bottom of module files;
true only when file is run, not when it is imported as a
library component.

• To load file contents in a single expression, use
data=open('filename').read().

• To iterate through text files by lines, use for line in
file: in version 2.2 and later (in older versions, use for
line in file.readlines():).

• To retrieve command-line arguments, use sys.argv.

• To retrieve shell environment settings, use os.environ.

• The standard streams are: sys.stdin, sys.stdout, and
sys.stderror.

• To return a list of files matching a given pattern, use:
glob.glob('pattern').

• To return a list of files and subdirectories on a path, use:
os.listdir('.').

• To walk an entire tree of directories, use os.walk in Python
3.0 and 2.6 (os.path.walk is also available in Python 2.6
only).

• To run shell commands within Python scripts, you can
use os.system('cmdline'), output=os.popen('cmdline',
'r').read(). The latter form reads the spawned program’s
standard output, and may also be used to read
line-by-line.

184 | Python Pocket Reference



• Other streams of a spawned command are available via
the subprocess module in Python 3.0, and the
os.popen2/3/4 calls in Python 2.X only. The os.fork/
os.exec* calls have similar effect on Unix-like platforms.

• To make a file an executable script on Unix-like platforms,
add a line like #!/usr/bin/env python or #!/usr/local/
bin/python at the top and give the file executable permis-
sions with a chmod command. On Windows, files can be
clicked and run directly due to the registry.

• The dir([object]) function is useful for inspecting at-
tribute namespaces; print(object.__doc__) often gives
documentation.

• The help([object]) function provides interactive help for
modules, functions, types, and more; help(str) gives help
on the str type; help("module") gives help on modules
even if they have not yet been imported; and
help("topic") gives help on keywords and other help top-
ics (use "topics" for a list of help topics).

• print() and input() (known as print and raw_input() in
Python 2.X) use sys.stdout and sys.stdin streams: assign
to file-like objects to redirect I/O internally, or use the
print(..., file=F) form in Python 3.0 (or the print >>
F, ... form in Python 2.X).

Usage Hints
• Use from __future__ import featurename to enable exper-

imental language features that might break existing code.

• Intuition about performance in Python programs is usu-
ally wrong: always measure before optimizing or migrat-
ing to C. Use the profile and time modules (as well as
cProfile and timeit).

• See modules unittest (a.k.a. PyUnit) and doctest for au-
tomated testing tools shipped with the Python standard
library; unittest is a class framework; doctest scans doc-
umentation strings for tests and outputs.

Python Idioms and Hints | 185



• See the pydoc library module and script shipped with
Python for extraction and display of documentation
strings associated with modules, functions, classes, and
methods.

• See the section “Warnings Framework” on page 130,
as well as -W in the section “Command-Line Op-
tions” on page 4, for details about turning off
future-deprecation warnings emitted by the interpreter.

• See Distutils, PyInstaller, py2exe, eggs, and other tools for
Python program distribution options.

• See PyInstaller and py2exe for turning Python programs
into .exe files for Windows.

• See NumPy, SciPy, and related packages for extensions
that turn Python into a numeric-scientific-programming
tool with vector objects, etc.

• See ZODB and others for full-featured OODB support
that allows Python native objects to be stored by key, and
SQLObject, SQLAlchemy, and others for object relational
mappers that allow classes to be used with relational
tables.

• See SWIG (among others) for a tool that can automatically
generate glue code for using C and C++ libraries within
Python scripts.

• See IDLE for a development GUI shipped with Python,
with syntax-coloring text editors, object browsers, debug-
ging, etc.; see also PythonWin, Komodo, Eclipse,
NetBeans, and others for additional IDE options.

• See Emacs help for tips on editing/running code in the
Emacs text editor. Most other editors support Python as
well (e.g., auto-indenting, coloring), including VIM and
IDLE; see the editors’ page at www.python.org.

• Porting to Python 3.0: use the −3 command-line option in
Python 2.6 to issue incompatibility warnings, and see the
2to3 script which automatically converts much 2.X code
to run under 3.X Python.

186 | Python Pocket Reference

http://www.python.org


Assorted Hints
• Important websites to refer to:

http://www.python.org
The Python home page

http://oreilly.com
The publisher’s home page

http://www.python.org/pypi
Additional third-party Python tools

http://www.rmi.net/~lutz
The author’s site

• Python philosophy: import this.

• You should say spam and eggs instead of foo and bar in
Python examples.

• Always look on the bright side of life.

Python Idioms and Hints | 187

http://www.python.org
http://oreilly.com
http://www.python.org/pypi
http://www.rmi.net/~lutz




Index

A
abs function, 102
all function, 102
any function, 102
apply function (Python 2.6), 119
arguments, command line, 6
ArithmeticError class, 125
as clauses, 71, 72, 81
ascii function, 102
assert statement, 80
AssertionError class, 125
assignment statement, 57
AttributeError class, 125
attributes, 83, 85

built-in, 131
pseudo-private, 86

augmented assignments, 57
augmented binary methods, 96

B
-b Python option, 4
-B Python option, 4
backslash escape sequences, 19
base classes, 74
BaseException class, 124

basestring function (Python 2.6),
120

bin function, 102
binary data encoding, 34
binary methods, 94
blocks, 53
bool function, 102
Boolean operations, 11
Boolean type, 52
break statement, 63
buffer function (Python 2.6), 120
buffering, 112
built-in attributes, 131
built-in exceptions, 124–131

Python 2.X, 131
specific exceptions raised,

125
superclasses, 124
warning category exceptions,

129
warnings framework, 130

built-in functions, 102–124
built-in types, 16–53

Boolean type, 52
dictionaries, 41–44
files, 45–49
lists, 36–40

We’d like to hear your suggestions for improving our indexes. Send email to
index@oreilly.com.

189



numbers, 16
program-unit types, 51
sets, 49
strings, 19–33
tuples, 44
type conversions, 52
types type, 51

bytearray function, 103
bytearray string type, 19, 20

bytearray method, 28
Unicode and, 34

bytes function, 103
bytes string type, 19, 20

byte method, 28
Unicode and, 34

BytesWarning class, 130

C
-c command specification, 6
callable function (Python 2.6),

120
capwords function, 139
cgi module, 174
chdir function, 145
chr function, 103
class privates, 87
class statement, 74, 85

class decorators, 74
metaclasses, 75

classes, 85
classic classes, 87
new style classes, 87

classmethod function, 103
closefd, 113
cmp function (Python 2.6), 120
code examples, 3
coerce function (Python 2.6),

120
command-line options, 4

option variables, 8
comments, 53
comparisons, 12
compile function, 104
complex function, 104
composition, 168

compound statements, 56
concatenated string constants, 20
constructors (see __init__

method)
context managers, 48

operator overloading methods
for, 99

Python 3.1, 81
continue statement, 64
control flow, 53
conventions, 2
core language hints, 183
core widgets, tkinter, 169

D
-d Python option, 4
dbm module, 164
decorators, 67, 74
def statement, 64–68

argument formats, 64
defaults and attributes, 66
function and method

decorators, 67
lambda expressions, 66
Python 3.0 function

annotations, 66
Python 3.0 keyword-only

arguments, 65
del statement, 64
delattr function, 104
DeprecationWarning class, 129
descriptors

file descriptor tools, 145
overloading methods for, 98

dict function, 104
dictionaries, 41–44

changes, Python 2.X to 3.0,
41

literals, 41
operations, 42

dictionary comprehensions, 40
dir function, 104
divmod function, 105
documentation strings

(docstrings), 54

190 | Index



E
-E Python option, 4
else clauses, 62, 76
email package, 174
encoding, 112
enumerate function, 105
environ variable, 144
Environment class, 125
environment hints, 184
environment tools, 144
environment variables, 7
EOFError class, 125
errors, 112
eval function, 105
except clauses, 76
Exception class, 124

Python 2.X, 131
exception names, 56
exceptions, 76, 78

built-in exceptions (see built-
in exceptions)

class exceptions, 78
exec statement (Python 2), 82
execfile function (Python 2.6),

120
expression operators, 8

precedence, 8
usage notes, 10

expression statement, 59

F
file descriptor tools, 145
file function (Python 2.6), 121
file pathname tools, 147
files, 45–49

any files (operations), 47
attributes, 48
file context managers, 48
file function, 45
input files, 46
notes, 49
open( ) function, 45
output files, 47

filter function, 106
finally clauses, 76

float function, 106
FloatingPointError class, 125
for loops, nested in list

comprehensions, 39
for statement, 63
format function, 106
Formatter class, 140
from statement, 72
frozenset function, 106
frozenset( ) function, 50
ftplib module, 174
functions, 59, 64

(see also def statements)
built-in functions (see built-in

functions)
call syntax, 59
definition, 64

FutureWarning class, 129

G
generator expressions, 39
GeneratorExit class, 126
generators, 69
getattr function, 106
getcwd function, 145
__getitem__ method, 70
global statement, 70
globals function, 106

H
hasattr function, 107
hash function, 107
help function, 107
hex function, 107
hints, 183–187
html package, 175
http.client module, 174
http.server module, 175

I
-i Python option, 5
id function, 107
if statement, 62
imaplib module, 174

Index | 191



imp.reload( ) function, 71
__import__ function, 107
import statement, 71
ImportError class, 126
ImportWarning class, 129
IndentationError class, 126
IndexError class, 126
indexing, 15
inheritance, 86
__init__.py file, 72
__init__ method, 89
input function, 108
input function (Python 2.6), 121
instances, 86
int function, 108
intern function (Python 2.6), 121
Internet modules, 173–175
IOError class, 126
is* string methods, 32
isinstance function, 108
issubclass function, 108
iter function, 108
__iter__ method, 70
iterators, 63, 69

J
Jython import statement, 71

K
KeyboardInterrupt class, 126
KeyError class, 126
keys( ) methods, 41

L
lambda expressions, 66
len function, 109
list function, 109
lists, 36–40

generator expressions, 39
list comprehension

expressions, 38
literals, 36
operations, 37

locals function, 109

long function (Python 2.6), 121
LookupError class, 125

M
-m module specification, 6
maketrans function, 139
map function, 109

list comprehensions and, 38
mapping operations, 14
match objects, 158
max function, 110
MemoryError class, 126
memoryview function, 110

Python 2.X, 119
metaclasses, 75
methods, 85

binary methods, 94
augmented, 96

call syntax, 59
self arguments, 74

min function, 110
module privates, 86
modules, 132
mutable sequence operations, 13

N
NameError class, 126
namespaces, 82–85, 86

attributes, 83
lexical scopes, 83
object namespaces, 83
qualified and unqualified

namespaces, 82
statically nested scopes, 84

newline, 113
next function, 110
__next__ method, 40, 70
nntplib module, 174
non-ASCII character encoding,

34
None, 51, 66, 68, 182
nonlocal statement, 70
NotImplementedError class, 127
number types, 16

decimal and fraction, 18

192 | Index



operations, 17
operator overloading methods

for, 98
binary types, 94–97

third-party types, 18
numeric operations, 14

O
object function, 110
object persistence modules, 163–

168
dbm and shelve modules, 164
pickle module, 166

oct function, 111
OOP (object-oriented

programming), 85–88
attributes, 85

pseudo-private, 86
classes, 85

new style classes, 87
inheritance, 86
instances, 86

open function, 45, 111
Python 2.6, 123

operational variables
(environment), 7

operations (types), 11
operator overloading methods,

88–102
for all types, 88
for binary operators, 94–97
for collections, 93
for context managers, 99
for descriptors, 98
for mappings, 93
for numbers, 98
Python 2.X methods, 99

ord function, 113
os module, 141–155

administrative tools, 141
environment tools, 144
file descriptor tools, 145
file pathname tools, 147
os.path module, 153
portability constants, 142

process control, 150
shell commands, 143

OSError class, 127
OverflowError class, 127

P
package imports, 72
pass statement, 63
pattern syntax, 159
PendingDeprecationWarning

class, 129
pickle module, 166
popen function, 144
poplib module, 174
pow function, 113
precedence of expression

operators, 8
print function, 113

Python 2.X, 119
print statement, 60

Python 2.X, 61
process control, 150
program specification, 6
programs, starting, 6
property function, 114
putenv function, 145
Python 2.X

built-in exceptions, 131
built-in functions, 119
operator overloading methods

for, 99
print statement, 61
statements, 82

Python 3.0 Unicode support, 34
Python options, 4
Python programming language, 1
Python versions, 2

Q
quotes, 19

R
raise statement, 78–80

class exceptions, 78

Index | 193



range function, 114
raw strings, 20
raw_input function (Python 2.6),

121
re module, 155–162

match objects, 158
module functions, 155
pattern syntax, 159
regular expression objects,

157
reduce function (Python 2.6),

122
ReferenceError class, 127
reload function (Python 2.6), 122
repr function, 114
return statement, 68
reversed function, 115
round function, 115
RuntimeError class, 127
RuntimeWarning class, 129

S
-s Python option, 5
-S Python option, 5
scopes, 82–85

lexical scopes, 83
statically nested scopes, 84

scriptfilename specification, 6
select module, 173
self argument, 74
sequence converters, 52
sequence operations, 12

notes, 15
set function, 115
set type, 18
setattr function, 115
sets, 49

literals, 49
operations, 50
set comprehensions, 40

shell commands, 144
shelve module, 164
slice function, 115
slicing, 15
smtplib module, 174

socket module, 173
socketserver module, 173
sorted function, 115
spawn* functions, 144
SQL database API, 179–182

API usage example, 179
connection objects, 181
cursor objects, 181
module interface, 180
type objects and constructors,

182
standard library modules, 132,

175–178
binary data parsing, 178
datetime module, 177
math module, 176
threading modules, 177
time module, 176

StandardError class
Python 2.X, 131

startfile function, 143
starting programs, 6
statements, 56–82

assert statement, 80
assignment statement, 57
break statement, 63
class statement, 74
compound statements, 56
continue statement, 64
def statement, 64–68
del statement, 64
exec statement (Python 2), 82
expression statement, 59
for statement, 63
from statement, 72
global statement, 70
if statement, 62
import statement, 71
name rules, 54
nonlocal statement, 70
pass statement, 63
print statement, 60
Python 2.X statements, 82
raise statement, 78–80
return statement, 68
suites, 56

194 | Index



try statement, 76
while statement, 62
with statement, 80
yield statement, 68

statically nested scopes, 84
staticmethod function, 116
StopIteration class, 127
str function, 116
string constants, 140
string module, 139–140
strings, 19–36

\ (backslash) escape
sequences, 19

' and " (quotes), 19
byte method, 28
bytearray method, 28
bytearray string type, 19
bytes string type, 19
content tests, 32
formatting, 21–25, 31

formatting expression, 22
formatting method, 23

operations, 21
searching, 29
splitting and joining, 30
str string type, 19

str method, 28
unicode and, 33

string constant escape codes,
20

string converters, 52
string literals, 19
string methods, 26
string module, 32
template string substitution,

26
unicode string type, 19
Unicode strings, 33–36

sum function, 117
super function, 117
superclasses, 74
syntax

name rules, 54
syntax rules, 53
SyntaxError class, 127
SyntaxWarning class, 129

sys module, 133–139
argv, 133
builtin_module_names, 133
byteorder, 133
copyright, 133
displayhook function, 133
dllhandle, 133
dont_write_bytecode, 137
excepthook function, 133
exc_info( ), 133
executable, 134
exec_prefix, 134
exit function, 134
getcheckinterval( ), 134
getdefaultencoding function,

134
getfilesystemencoding( ), 134
getrecursionlimit( ), 135
getrefcount(object), 134
getsizeof function, 135
hexversion, 135
intern(string), 135
last_type, last_value, and

last_traceback, 135
maxsize, 135
maxunicode, 136
modules (sys module

dictionary), 136
path, 136
platform, 136
prefix, 136
ps1, 137
ps2, 137
setcheckinterval function,

137
setdefaultencoding function,

137
setprofile function, 137
setrace function, 138
setrecursionlimit function,

137
stderr, 138
stdin, 138
stdout, 138
tracebacklimit, 138
version, 138

Index | 195



version_module, 139
winver, 139
_getframe, 135
__stdin__, __stdout__, and

__stderr__, 138
system function, 143
SystemError class, 127
SystemExit class, 128

T
TabError class, 128
telnetlib module, 174
Template class, 140
template string substitution, 26
third-party numeric types, 18
throw method, 69
tkinter module, 168–172

additional classes and tools,
171

common dialog calls, 170
core widgets, 169
example, 168
Tcl/Tk-to-Python/tkinter

mappings, 171
try statement, 76
tuple function, 117
tuples, 44
type conversions, built-in types,

52
type function, 117
TypeError class, 128

U
-u Python option, 5
UnboundLocalError class, 128
unichr function (Python 2.6),

122
unicode function (Python 2.6),

122
unicode string type, 19, 20
Unicode strings, 33–36

bytes and bytearray, 34
Python 2.X support, 35
support in Python 3.0, 34

UnicodeEncodeError and
UnicodeDecodeError
classes, 128

UnicodeError class, 128
UnicodeTranslateError class, 128
UnicodeWarning class, 130
urllib.parse module, 174
urllib.request module, 174
usage hints, 185
user-defined names, rules for, 54
UserWarning class, 129
uu, binhex, base64, binascii, and

quopri modules, 175

V
-v Python option, 5
-V Python option, 5
ValueError class, 129
vars function, 118

W
-W Python option, 5
Warning class, 129
warnings.warn function, 130
websites, 187
while statement, 62
whitespace, 54
widgets, 168
WindowsError class, 129
with statement, 80

X
-x Python option, 5
xdrlib module, 173
xml package, 175
xmlrpc package, 175
xrange function (Python 2.6),

123

Y
yield statement, 68

Z
-0 (zero) Python option, 5

196 | Index



-00 (zero zero) Python option, 5
ZeroDivisionError class, 129
zip function, 118

Index | 197




	Table of Contents
	Python Pocket Reference
	Introduction
	Conventions
	Using Code Examples
	Safari® Books Online
	Command-Line Options
	Python Options
	Program Specification

	Environment Variables
	Operational Variables
	Command-Line Option Variables

	Built-in Types and Operators
	Operators and Precedence
	Operator Usage Notes
	Operations by Category
	Sequence Operation Notes
	Indexing: S[i]
	Slicing: S[i:j]
	Slicing: S[i:j:k]
	Other


	Specific Built-in Types
	Numbers
	Literals and creation
	Operations
	Decimal and fraction
	Other numeric types

	Strings
	Literals and creation
	Operations
	String formatting
	String formatting expression
	String formatting method
	Template string substitution
	String methods
	byte and bytearray methods
	Searching
	Splitting and joining
	Formatting
	Content tests
	The original string module

	Unicode Strings
	Unicode support in Python 3.0
	byte and bytearray strings
	Unicode support in Python 2.X

	Lists
	Literals and creation
	Operations
	List comprehension expressions
	Generator expressions
	Other generators and comprehensions

	Dictionaries
	Literals and creation
	Operations

	Tuples
	Literals
	Operations

	Files
	Input files
	Output files
	Any files
	Attributes (all read-only)
	File context managers
	Notes

	Sets
	Literals and creation
	Operations

	Other Common Types
	Boolean

	Type Conversions

	Statements and Syntax
	Syntax Rules
	Name Rules
	Name format
	Name conventions


	Specific Statements
	The Assignment Statement
	Augmented assignment
	Normal and extended sequence assignment

	The Expression Statement
	Call syntax
	Arbitrary arguments call syntax

	The print Statement
	Python 2.X print statements

	The if Statement
	The while Statement
	The for Statement
	The pass Statement
	The break Statement
	The continue Statement
	The del Statement
	The def Statement
	Python 3.0 keyword-only arguments
	Python 3.0 function annotations
	lambda expressions
	Defaults and attributes
	Function and method decorators

	The return Statement
	The yield Statement
	Generators and iterators

	The global Statement
	The nonlocal Statement
	The import Statement
	Package imports

	The from Statement
	Package relative import syntax

	The class Statement
	Class decorators in Python 2.6 and 3.0
	Metaclasses

	The try Statement
	Python 2.X try statement forms

	The raise Statement
	Class exceptions
	Python 2.X raise statement forms

	The assert Statement
	The with Statement
	Multiple context managers in Python 3.1

	Python 2.X Statements

	Namespace and Scope Rules
	Qualified Names: Object Namespaces
	Unqualified Names: Lexical Scopes
	Statically Nested Scopes

	Object-Oriented Programming
	Classes and Instances
	Class objects provide default behavior
	Instance objects are generated from classes
	Inheritance rules

	Pseudoprivate Attributes
	Module privates
	Class privates

	New Style Classes

	Operator Overloading Methods
	For All Types
	For Collections (Sequences, Mappings)
	For Numbers (Binary Operators)
	Basic binary methods
	Right-side binary methods
	Augmented binary methods

	For Numbers (Other Operations)
	For Descriptors
	For Context Managers
	Python 2.X Operator Overloading Methods
	Methods in Python 3.0 only
	Methods in Python 2.X only


	Built-in Functions
	Python 2.X Built-in Functions
	Python 3.0 built-ins not supported by Python 2.6
	Python 2.6 built-ins not supported by Python 3.0


	Built-in Exceptions
	Superclasses (Categories)
	Specific Exceptions Raised
	Warning Category Exceptions
	Warnings Framework
	Python 2.X Built-in Exceptions

	Built-in Attributes
	Standard Library Modules
	The sys Module
	The string Module
	Module Functions and Classes
	Constants

	The os System Module
	Administrative Tools
	Portability Constants
	Shell Commands
	Environment Tools
	File Descriptor Tools
	File Pathname Tools
	Process Control
	The os.path Module

	The re Pattern-Matching Module
	Module Functions
	Regular Expression Objects
	Match Objects
	Pattern Syntax

	Object Persistence Modules
	dbm and shelve Modules
	pickle Module
	Pickling interfaces
	Unpickling interfaces
	Usage notes


	The tkinter GUI Module and Tools
	tkinter Example
	tkinter Core Widgets
	Common Dialog Calls
	Module tkinter.messagebox (tkMessageBox in Python 2.X)
	Module tkinter.simpledialog (tkSimpleDialog in Python 2.X)
	Module tkinter.colorchooser (tkColorChooser in Python 2.X)
	Module tkinter.filedialog (tkFileDialog in Python 2.X)

	Additional tkinter Classes and Tools
	Tcl/Tk-to-Python/tkinter Mappings

	Internet Modules and Tools
	Commonly Used Library Modules

	Other Standard Library Modules
	The math Module
	The time Module
	The datetime Module
	Threading Modules
	Binary Data Parsing

	Python Portable SQL Database API
	API Usage Example
	Module Interface
	Connection Objects
	Cursor Objects
	Type Objects and Constructors

	Python Idioms and Hints
	Core Language Hints
	Environment Hints
	Usage Hints
	Assorted Hints


	Index



